• Title/Summary/Keyword: Digital chest radiography

Search Result 65, Processing Time 0.021 seconds

The Study on the Reduction of Patient Surface Dose Through the use of Copper Filter in a Digital Chest Radiography (디지털 흉부 촬영에서 구리필터사용에 따른 환자 표면선량 감소효과에 관한 연구)

  • Shin, Soo-In;Kim, Chong-Yeal;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.31 no.3
    • /
    • pp.223-228
    • /
    • 2008
  • The most critical point in the medical use of radiation is to minimize the patient's entrance dose while maintaining the diagnostic function. Low-energy photons (long wave X-ray) among diagnostic X-rays are unnecessary because they are mostly absorbed and contribute the increase of patient's entrance dose. The most effective method to eliminate the low-energy photons is to use the filtering plate. The experiments were performed by observing the image quality. The skin entrance dose was 0.3 mmCu (copper) filter. A total of 80 images were prepared as two sets of 40 cuts. In the first set (of 40 cuts), 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of signal + noise image set. In the second set of 40 cuts, 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of non-signal image (noisy image) with random location of diameter 4 mm and 3 mm thickness of acryl disc for ROC signal at the chest phantom. P(S/s) and P(S/n) were calculated and the ROC curve was described in terms of sensitivity and specificity. Accuracy were evaluated after reading by five radiologists. The number of optically observable lesions was counted through ANSI chest phantom and contrast-detail phantom by recommendation of AAPM when non-filter or Cu filter was used, and the skin entrance dose was also measured for both conditions. As the result of the study, when the Cu filter was applied, favorable outcomes were observed on, the ROC Curve was located on the upper left area, sensitivity, accuracy and the number of CD phantom lesions were reasonable. Furthermore, if skin entrance dose was reduced, the use of additional filtration may be required to be considered in many other cases.

  • PDF

The Use of Continuous Confidence Judgments in ROC of Digital Radiography (디지털 X선영상 평가에서 연속확신도법 ROC의 적용)

  • Kim, Hark-Sung;Lee, In-Ja;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.147-151
    • /
    • 2009
  • In general, the discrete confidence judgments that use five-step assessment method have been used to assess the medical images by ROC. TPF or FPF can be computed easily with this independent reading test. However, during experiments, it happens frequently that adequate distribution for observers is required to smoothly estimate the ROC curve. In addition, data becomes invalid for distribution of the created categories. To solve such problems or to apply the ROC interpretation to data that is not obtained from the experimental observation, the continuous confidence judgements (CCJ) has been proposed, which implements ROC interpretation using continuously-distributed experimental results without category classification has been used. As the use of CCJ to assess medical images was barely reported in Korea, we applied it to the assessment of chest digital images in this study. The results showed that a smooth ROC curve was obtained conveniently by the commercialized program and the characteristic value was measured easily. Therefore, it is recommended that this method can be applied to the assessment of digital medical images.

  • PDF

Set Up and Operation for Medical Radiation Exposure Quality Control System of Health Promotion Center (건강검진센터의 의료방사선 피폭 품질관리 시스템 구축 운영 경험 보고)

  • Kim, Jung-Su;Jung, Hae-Kyoung;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT $357.9mGy{\cdot}cm$ in abdomen and pelvic CT, $572.4mGy{\cdot}cm$ in brain without CT, $55.9mGy{\cdot}cm$ in calcium score/heart CT, screening CT at $54mGy{\cdot}cm$ in chest screening CT(low dose screening CT scan), $284.99mGy{\cdot}cm$ in C-spine CT and $341.85mGy{\cdot}cm$ in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows $274.0mGy{\cdot}cm2$ and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure.

Investigation of Tube Voltage Range using Dose Comparison based on Effective Detector Exposure Index in Chest Radiography (흉부 X-ray 검사 시 선량 비교를 활용한 유효 Detector Exposure Index 기반의 적절한 관전압 범위 제안)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • This study is to confirm the range of tube voltage for Chest X-ray in DR system by comparing with dose area product (DAP) and effective dose in efficient detector exposure index (DEI) range. GE definium 8000 was used to for the phantom study. The range of tube voltage is 60~130 kVp and of mAs is 2.5~40 mAs. The acquired images were classified into efficient DEI groups, then calculated effective dose with DAP by using a PC-Based Monte Carlo Program 2.0. The signal to noise ratio (SNR) was measured at 4 regions, including the thoracic spine, the lung area with the ribs, the lung area without the ribs, and the liver by using Picture Archiving and Communication System. The significance of the group for each tube voltage was verified by performing the kruskal-wallis test and the mann-whitney test as a post-test. When set to 4 groups dependned on the tube voltage, DAP showed significant differences; 60 kVp and 80 kVp, and 60 kVp and 90 kVp (p= 0.034, 0.021). Effective dose exhibited no statistically significant differences from the all of the group (p>0.05). SNR exhibited statistically significant differences from the all of the group in the liver except compared to 80 kVp and 90 kVp (p<0.05). Therefore, high tube voltages of 100 kVp or more need to be reconsidered in terms of patient dose and imaging in order to represent an appropriate chest X-ray image in a digital system.

Findings on Chest Low-Dose CT Images of Group Exposed to Inorganic Dusts (분진에 노출되었던 집단의 흉부 저선량 CT영상 소견)

  • Lee, Won-Jeong;Seon, Jong-Ryul;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.305-314
    • /
    • 2011
  • The purpose of this study was to compare the findings on the chest low-dose CT (LDCT) images between the negative and positive groups for pneumoconiosis in the group exposed to inorganic dust. From May 30, 2007 to August 31, 2008, total 328 subjects were examined by a LDCT. LDCT images were read by a chest radiologist who has much experience for reading of pneumoconiosis. All subjects were classified into two groups based on digital images after consensus reading of two radiologists according to the ILO 2000 guidelines; negative group (87, 26.5%) without pneumoconiosis and positive group (241, 73.5%). Statistical analysis was performed using a SPSS 14.0. There were significant differences in age (60.9 vs. 65.0, p<0.001), and in dust expose duration (17.0 vs. 19.2, p=0.024) between two groups, but no significant difference in smoking (p=0.784). Of the 328 subjects, 13 diagnosis were extracted from 245 subjects (74.7%). Coronary artery calcification (CAC) was significantly higher in positive group than that in negative group (36.9% vs. 25.3%, p=0.049). Honeycombing showed higher frequency in positive group than in negative group (6.2% vs. 1.2%, p=0.079). Pneumoconiosis findings caused by inorganic dusts exposure showed the significant relation with CAC on LDCT images. Future studies need to prove that pneumoconiosis finding is independent risk factor for CAC using a coronary artery angiography.

The Study for Optimal Exposure Condition of Chest Examination of Digital Radiography System (디지털 방사선 촬영장치의 흉부촬영 최적 조사조건에 관한 연구)

  • Park, Ji-Koon;Jung, Bong-Jae;Park, Hyong-Hu;Noh, Si-Cheol;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • Despite of increasing the use of the digital imaging device in the radiology area, the setting on the optimal irradiation conditions are insufficient. In this study, the exposure dose and image quality by exposure condition of digital radiography device were compared. The exposure doses were obtained by adjusting the exposure condition as 5 steps respectively based on the exposure conditions that are currently used of CR and DR radiography devices. The acquired image has been assessed by 20 medical image professors using the assessment method of the Japanese Society for Tuberculosis Prevent. As a result, in the case of the CR system, the better image quality was obtained in the condition of 120 kVp and 1.5 mAs~2.4 mAs (quality score 91~95.5 points) than standard exposure condition(110 kVp, 3.2 mAs, 86 points). And exposure dose was evaluated as low with $61.3{\sim}98.4{\mu}Gy$ than standard condition($105.11{\mu}Gy$). In DR system, however, the image quality score was higher as 97~98.6 points in the lower tube voltage range (112 kVp, 2.4~3.2 mAs) condition than the standard exposure condition (125 kVp, 3.2 mAs, 91 points). In addition, the exposure dose was $61.5-77.2{\mu}Gy$ lower than standard condition($93{\mu}Gy$). In addition, the exposure dose was low as $61.5-77.2{\mu}Gy$ than standard condition($93{\mu}Gy$). With the results of this study, we confirmed that it is possible to reduce the patient exposure dose with the same image quality by adjusting the optimal exposure condition of digital device.

Evaluation of the Interfraction Setup Errors using On Board- Imager (OBI) (On board imager를 이용한 치료간 환자 셋업오차 평가)

  • Jang, Eun-Sung;Baek, Seong-Min;Ko, Seung-Jin;Kang, Se-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2009
  • When using Image Guided Radiation Therapy, the patient is placed using skin marker first and after confirming anatomical location using OBI, the couch is moved to correct the set up. Evaluation for the error made at that moment was done. Through comparing $0^{\circ}$ and $270^{\circ}$ direction DRR image and OBI image with 2D-2D matching when therapy planning, comparison between patient's therapy plan setup and actual treatment setup was made to observe the error. Treatment confirmation on important organs such as head, neck and spinal cord was done every time through OBI setup and other organs such as chest, abdomen and pelvis was done 2 ~ 3 times a week. But corrections were all recorded on OIS so that evaluation on accuracy could be made through using skin index which was divided into head, neck, chest and abdomen-pelvis on 160 patients. Average setup error for head and neck patient on each AP, SI, RL direction was $0.2{\pm}0.2cm$, $-0.1{\pm}0.1cm$, $-0.2{\pm}0.0cm$, chest patient was $-0.5{\pm}0.1cm$, $0.3{\pm}0.3cm$, $0.4{\pm}0.2cm$, and abdomen was $0.4{\pm}0.4cm$, $-0.5{\pm}0.1cm$, $-0.4{\pm}0.1cm$. In case of pelvis, it was $0.5{\pm}0.3cm$, $0.8{\pm}0.4cm$, $-0.3{\pm}0.2cm$. In rigid body parts such as head and neck showed lesser setup error compared to chest and abdomen. Error was greater on chest in horizontal axis and in AP direction, abdomen-pelvis showed greater error. Error was greater on chest in horizontal axis because of the curve in patient's body when the setup is made. Error was greater on abdomen in AP direction because of the change in front and back location due to breathing of patient. There was no systematic error on patient setup system. Since OBI confirms the anatomical location, when focus is located on the skin, it is more precise to use skin marker to setup. When compared with 3D-3D conformation, although 2D-2D conformation can't find out the rolling error, it has lesser radiation exposure and shorter setup confirmation time. Therefore, on actual clinic, 2D-2D conformation is more appropriate.

  • PDF

Image Quality Evaluation of CsI:Tl and Gd2O2S Detectors in the Indirect-Conversion DR System (간접변환방식 DR장비에서 CsI:Tl과 Gd2O2S의 검출기 화질 평가)

  • Kong, Changgi;Choi, Namgil;Jung, Myoyoung;Song, Jongnam;Kim, Wook;Han, Jaebok
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • The purpose of this study was to investigate the features of CsI:Tl and $Gd_2O_2S$ detectors with an indirect conversion method using phantom in the DR (digital radiography) system by obtaining images of thick chest phantom, medium thickness thigh phantom, and thin hand phantom and by analyzing the SNR and CNR. As a result of measuring the SNR and CNR according to the thickness change of the subject, the SNR and CNR were higher in CsI:Tl detector than in $Gd_2O_2S$ detector when the medium thickness thigh phantom and thin hand phantom were scanned. However, when the thick chest phantom was used, for the SNR at 80~125 kVp and the CNR at 80~110 kVp in the $Gd_2O_2S$ detector, the values were higher than those of CsI:Tl detector. The SNR and CNR both increased as the tube voltage increased. The SNR and CNR of CsI:Tl detector in the medium thickness thigh phantom increased at 40~50 kVp and decreased as the tube voltage increased. The SNR and CNR of $Gd_2O_2S$ detector increased at 40~60 kVp and decreased as the tube voltage increased. The SNR and CNR of CsI:Tl detctor in the thin hand phantom decreased at the low tube voltage and increased as the tube voltage increased, but they decreased again at 100~110 kVp, while the SNR and CNR of $Gd_2O_2S$ detector were found to decrease as the tube voltage increased. The MTF of CsI:Tl detector was 6.02~90.90% higher than that of $Gd_2O_2S$ detector at 0.5~3 lp/mm. The DQE of CsI:Tl detector was 66.67~233.33% higher than that of $Gd_2O_2S$ detector. In conclusion, although the values of CsI:Tl detector were higher than those of $Gd_2O_2S$ detector in the comparison of MTF and DQE, the cheaper $Gd_2O_2S$ detector had higher SNR and CNR than the expensive CsI:Tl detector at a certain tube voltage range in the thick check phantom. At chest X-ray, if the $Gd_2O_2S$ detector is used rather than the CsI:Tl detector, chest images with excellent quality can be obtained, which will be useful for examination. Moreover, price/performance should be considered when determining the detector type from the viewpoint of the user.

Effective Detective Quantum Efficiency (eDQE) Evaluation for the Influence of Focal Spot Size and Magnification on the Digital Radiography System (X-선관 초점 크기와 확대도에 따른 디지털 일반촬영 시스템의 유효검출양자효율 평가)

  • Kim, Ye-Seul;Park, Hye-Suk;Park, Su-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The magnification technique has recently become popular in bone radiography, mammography and other diagnostic examination. However, because of the finite size of X-ray focal spot, the magnification influences various imaging properties with resolution, noise and contrast. The purpose of study is to investigate the influence of magnification and focal spot size on digital imaging system using eDQE (effective detective quantum efficiency). Effective DQE is a metric reflecting overall system response including focal spot blur, magnification, scatter and grid response. The adult chest phantom employed in the Food and Drug Administration (FDA) was used to derive eDQE from eMTF (effective modulation transfer function), eNPS (effective noise power spectrum), scatter fraction and transmission fraction. According to results, spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.76, 2.21, 1.78, 1.49 and 1.26 lp/mm respectively using small focal spot. The spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.21, 1.66, 1.25, 0.93 and 0.73 lp/mm respectively using large focal spot. The eMTFs and eDQEs decreases with increasing magnification factor. Although there are no significant differences with focal spot size on eDQE (0), the eDQEs drops more sharply with large focal spot than small focal spot. The magnification imaging can enlarge the small size lesion and improve the contrast due to decrease of effective noise and scatter with air-gap effect. The enlargement of the image size can be helpful for visual detection of small image. However, focal spot blurring caused by finite size of focal spot shows more significant impact on spatial resolution than the improvement of other metrics resulted by magnification effect. Based on these results, appropriate magnification factor and focal spot size should be established to perform magnification imaging with digital radiography system.

Analysis of Image Factors of X-ray Films: Study for the Intelligent Replenishment System of Automatic Film Processor (자동현상기 지능화에 필요한 연산처리 기법의 개발을 위한 방사선 필름의 영상 지수의 분석)

  • Park, Sung-Tae;Yoon, Chong-Hyun;Park, Kwang-Bo;Auh, Yong-Ho;Lee, Hyoung-Jin;In, Kyung-Hwan;Kim, Keon-Chung
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • We analyzed image factors to determine the characteristic factors that need for intelligent replenishment system of the auto film processor. We processed the serial 300 sheets of radiographic films of chest phantom without replenishment of developing and fixation replenisher. We took the digital data by using film digitizer which scaned the films and automatically summed up the pixel values of the films. We analyzed characteristic curves, average gradients and relative speeds of individual film using densitometer and step densitometry. We also evaluated the pH of developer, fixer, and washer fluid with digital pH meter. Fixer residual rate and washing effect were measured by densitometer using the reagent methods. There was no significant reduction of the digital density numbers of the serial films without replenishment of developer and fixer. The average gradients were gradually decreased by 0.02 and relative speeds were also gradually decreased by 6.96% relative to initial standard step-densitometric measurement. The pHs of developer and fixer were reflected the inactivation of each fluid. The fixer residual rates and washing effects after processing each 25 sheets of films were in the normal range. We suggest that the digital data are not reliable due to limitation of the hardware and software of the film digitizer. We conclude that average gradient and relative speed which mean the film's contrast and sensitivity respectively are reliable factors for determining the need for the replenishment of the auto film processor. We need more study of simpler equations and programming for more intelligent replenishment system of the auto film processor.

  • PDF