DOI QR코드

DOI QR Code

Investigation of Tube Voltage Range using Dose Comparison based on Effective Detector Exposure Index in Chest Radiography

흉부 X-ray 검사 시 선량 비교를 활용한 유효 Detector Exposure Index 기반의 적절한 관전압 범위 제안

  • Shim, Jina (Department of Radiology, Severacnce hospital) ;
  • Lee, Youngjin (Department of Radiological Science, College of Health Science, Gachon University)
  • 심지나 (세브란스 병원 영상의학과) ;
  • 이영진 (가천대학교 보건과학대학 방사선학과)
  • Received : 2021.02.22
  • Accepted : 2021.04.30
  • Published : 2021.04.30

Abstract

This study is to confirm the range of tube voltage for Chest X-ray in DR system by comparing with dose area product (DAP) and effective dose in efficient detector exposure index (DEI) range. GE definium 8000 was used to for the phantom study. The range of tube voltage is 60~130 kVp and of mAs is 2.5~40 mAs. The acquired images were classified into efficient DEI groups, then calculated effective dose with DAP by using a PC-Based Monte Carlo Program 2.0. The signal to noise ratio (SNR) was measured at 4 regions, including the thoracic spine, the lung area with the ribs, the lung area without the ribs, and the liver by using Picture Archiving and Communication System. The significance of the group for each tube voltage was verified by performing the kruskal-wallis test and the mann-whitney test as a post-test. When set to 4 groups dependned on the tube voltage, DAP showed significant differences; 60 kVp and 80 kVp, and 60 kVp and 90 kVp (p= 0.034, 0.021). Effective dose exhibited no statistically significant differences from the all of the group (p>0.05). SNR exhibited statistically significant differences from the all of the group in the liver except compared to 80 kVp and 90 kVp (p<0.05). Therefore, high tube voltages of 100 kVp or more need to be reconsidered in terms of patient dose and imaging in order to represent an appropriate chest X-ray image in a digital system.

본 연구는 흉부 X-ray 검사 시 디지털 영상의 적절한 유효 Detector exposure index (DEI) 범위 내의 영상의 Dose area product (DAP)값과 유효선량을 비교함으로써 적절한 관전압의 범위를 확인하고자 하였다. GE Definium 8000을 사용하여 흉부팬텀을 이용한 Chest PA 검사를 재현하였다. kVp range는 60~130 kVp, mAs range는 2.5 ~ 40 mAs로 설정하였다. 획득한 영상을 유효한 DEI 범위의 영상으로 분류하고 측정한 DAP을 이용하여 PC-Based Monte Carlo Program을 통해 유효선량을 계산하였다. 영상의 정량적 평가를 하기 위해 Picture archiving and communication system을 이용하여 흉추, 갈비뼈가 포함된 폐야부위, 갈비뼈가 포함되지 않은 폐야부위, 간 등 총 네 부분의 Signal to noise ratio (SNR)를 측정하였다. 관전압 별 그룹의 유의성은 Kruskal-wallis test와 사후검정으로 Mann-whitney test를 시행하여 검증하였으며 검증에 사용된 신뢰구간은 95%이다. 총 13개의 관전압 중 적정한 유효 DEI 범위안에 포함된 네개의 관전압 (60~90 kVp)을 각각 비교하였을 때, DAP는 60 kVp를 기준으로 80 kVp, 90 kVp를 비교한 결과에서만 유의한 차이를 보였다 (p= 0.034, 0.021). 유효선량은 모든 관전압 그룹에서 유의한 차이를 보이지 않았다 (p>0.05). SNR은 간 부위에서 80 kVp와 90 kVp를 제외한 모든 그룹에서 유의한 차이를 보였다 (p<0.05). 그러므로 디지털 환경에서 적정한 흉부 X-ray 영상의 농도를 나타내기 위해 100 kVp 이상의 고관전압은 환자 선량 및 영상 측면에서 재고할 필요성이 있다고 사료된다.

Keywords

References

  1. M. B. Williams, E. A. Krupinski, K. J. Strauss, W. K. Breeden, M. S. Rzeszotarski, K. Applegate, M. Wyatt, S. Bjork, J. A. Seibert, "Digital radiography image quality: image acquisition", Journal of the American College of Radiology, Vol. 4, No. 6, pp. 371-388, 2007. https://doi.org/10.1016/j.jacr.2007.02.002
  2. C. Fink, P. J. Hallscheidt, G. Noeldge, A. Kampschulte, B. Radeleff, W. P. Hosch, G. W. Kauffmann, J. Hansmann, "Clinical comparative study with a large-area amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography", American Journal of Roentgenology, Vol. 178, No. 2, pp. 481-486, 2002. https://doi.org/10.2214/ajr.178.2.1780481
  3. ICRP, "Managing patient dose in digital radiology", ICRP Publication 93, Vol. 34, No. 1, 2003.
  4. J. W. Gil, J. H. Park, M. H. Park, C. Y. Park, S. Y. Kim, D. W. Shin, W. D. Kim, "Estimated exposure dose and usage of radiological examination of the national health screening", Journal of Radiation Protection, Vol. 39, No. 3, pp. 142-149, 2014. https://doi.org/10.14407/jrp.2014.39.3.142
  5. B. Park, D. W. Sung, "A comparative study of image quality and radiation dose with changes in tube voltage and current for a digital chest radiography", Journal of the Korean Society of Radiology, Vol. 62, No. 2, pp. 131-137, 2010. https://doi.org/10.3348/jksr.2010.62.2.131
  6. M. Uffmann, U. Neitzel, M. Prokop, N. Kabalan, M. Weber, C. J. Herold, C. Schaefer-Prokop, "Flat-panel-detector chest radiography: effect of tube voltage on image quality", Radiology, Vol. 235, No. 2, pp. 642-650, 2005. https://doi.org/10.1148/radiol.2352031730
  7. S. J. Anthony, "Digital radiography: image quality and radiation dose," Health Physics, Vol. 95, No. 5, pp. 586-598, 2008. https://doi.org/10.1097/01.hp.0000326338.14198.a2
  8. W. P. Hosch, C. Fink, B. Radeleff, A. Kampschulte, G. W. Kauffmann, J. Hansmann, "Radiation dose reduction in chest radiography using a flat-panel amorphous silicon detector", Clinical Radiology, Vol. 57, No. 10, pp. 902-907, 2002. https://doi.org/10.1053/crad.2002.0995
  9. O. W. Hamer, C. B. Sirlin, M. Strotzer, I. Borisch, N. Zorger, S. Feuerbach, M. Volk, "Chest radiography with a flat-panel detector: image quality with dose reduction after copper filtration", Radiology, Vol. 237, No. 2, pp. 691-700, 2005. https://doi.org/10.1148/radiol.2372041738
  10. Z. Sun, C. Lin, YS. Tyan, K-H. Ng, "Optimization of cheat radiographic imaging parameters: a comparison of image quality and entrance skin dose for digital chest radiography systems", Climical Imaging, Vol. 36, No. 4, pp. 279-286, 2012. https://doi.org/10.1016/j.clinimag.2011.09.006
  11. M. Mahesh, MDCT physics: the basics-technology, image quality and radiation dose, Lippincott Williams & Wilkins, Philadelphia, 2009.
  12. B. B. Ghoshhajra, L-C. Engel, G. Petra, D. Verdini, M. Sidhu, M. Karolyi, S. Abbara, U. Hoffmann, M. Kalra, T. J. Brady, "Direct chest area measurement: a potential anthropometric replacement for BMI to inform cardiac CT dose parameters?", Jourmal of Cardiovascular Computed Tomography, Vol. 5, No. 4, pp. 240-246, 2011. https://doi.org/10.1016/j.jcct.2011.06.003