• 제목/요약/키워드: Digital Voltage Mode Controller

Search Result 37, Processing Time 0.024 seconds

Design of LED Driving Circuit using Voltage Controlled Ring Oscillator and Lighting Controller (전압제어 링 발진기를 이용한 LED구동회로 및 조명제어기설계)

  • Kwon, Ki-Soo;Suh, Young-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • An LED driving and control circuit has been developed. The LED driver has a new PWM circuit for current control of LED columns with dimming, current and thermal control, and communication functions. The PWM circuit is composed of two ring oscillator and one counter which can be constructed using basic digital logic components. In addition, it has the functions of remote control mode such as ON, OFF, emergency and power saving modes by the serial communication. The PWM generator and control circuit have been designed and fabricated 0.35[${\mu}m$] Magnachip/Hynix digital IC fabrication process. The LED driving and control board using the developed chip is fabricated and tested successfully.

Optimization Design and Implementation of DC-DC Converter(LDC) for Electric Vehicle (전기자동차용 DC-DC 컨버터 최적설계)

  • Kwon, Yong-Hyo;Kim, Seung-Mo;Kim, Pyo-Soo;Kim, Mal-Su;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.107-108
    • /
    • 2012
  • This paper presents design and implementation of the LDC(1.8 kW DC-DC Converter for Electric Vehicles). For Implementation of the LDC, the adapted topology is ZVS(Zero Voltage Switching) PSFB(Phase Shift Full Bridge) with Digital Control is adopted. Also, for the purpose of stable operation of the LDC in vehicle with variable electrical load condition, Continuous Voltage and Current Limit Control scheme based on PI controller are developed. According to real-car test mode, the prototype of proposed the LDC is verified with performance and stability. Thus, optimizing design and implement of the LDC are discussed, and experimental results are presented.

  • PDF

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

Fast-Transient Digital LDO Regulator With Binary-Weighted Current Control (이진 가중치 전류 제어 기법을 이용한 고속 응답 디지털 LDO 레귤레이터)

  • Woo, Ki-Chan;Sim, Jae-Hyeon;Kim, Tae-Woo;Hwang, Seon-Kwang;Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1154-1162
    • /
    • 2016
  • This paper proposes a fast-transient digital LDO(Low dropout) regulator with binary-weighted current control technique. Conventional digital LDO takes a long time to stabilize the output voltage, because it controls the amount of current step by step, thus ringing problem is generated. Binary-weighted current control technique rapidly stabilizes output voltage by removing the ringing problem. When output voltage reliably reaches the target voltage, It added the FRZ mode(Freeze) to stop the operation of digital LDO. The proposed fast response digital LDO is used with a slow response DC-DC converter in the system which rapidly changes output voltage. The proposed digital controller circuit area was reduced by 56% compared to conventional bidirectional shift register, and the ripple voltage was reduced by 87%. A chip was implemented with a $0.18{\mu}F$ CMOS process. The settling time is $3.1{\mu}F$ and the voltage ripple is 6.2mV when $1{\mu}F$ output capacitor is used.

Development of RTDS-MATLAB Integrated Simulation Environment for Development and Verification of Voltage Measurement based CVR Control Algorithm (전압계측기반 CVR제어 알고리즘 개발 및 검증을 위한 RTDS-MATLAB 연동 시뮬레이션 환경 개발)

  • Go, Seok-Il;Ahn, Seon-Ju;Choi, Joon-Ho;Nam-Koong, Won;Shin, Chang-Hoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.549-556
    • /
    • 2016
  • CVR is a technique for reducing power consumption by reducing the voltage of the system and many demonstrations and studies have been conducted in the past. Recently, SCADA-based or AMI-based VVC have been developed and the CVR is used as an important operation mode. Using a variety of instruments, CVR determines the optimal VVC control references by closed loop control. In this paper, we implemented RTDS-MATLAB integrated simulation environment for development and verification of CVR control algorithm based on voltage measurement. The voltage control device of distribution system was modeled using RTDS and MATLAB has constructed a controller that can measure and control the voltage of the simulation system of RTDS. After the capacitor, which is a reactive power control device, flattens the voltage of the system, the control algorithm reduces the voltage of the system by tap control of the OLTC based on the flatten voltage. The proposed system was verified by simulations.

Implementation and Measurement of Protection Circuits for Step-down DC-DC Converter Using 0.18um CMOS Process (0.18um CMOS 공정을 이용한 강압형 DC-DC 컨버터 보호회로 구현 및 측정)

  • Song, Won-Ju;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.265-271
    • /
    • 2018
  • DC-DC buck converter is a critical building block in the power management integrated circuit (PMIC) architecture for the portable devices such as cellular phone, personal digital assistance (PDA) because of its power efficiency over a wide range of conversion ratio. To ensure a safe operation, avoid unexpected damages and enhance the reliability of the converter, fully-integrated protection circuits such as over voltage protection (OVP), under voltage lock out (UVLO), startup, and thermal shutdown (TSD) blocks are designed. In this paper, these three fully-integrated protection circuit blocks are proposed for use in the DC-DC buck converter. The buck converter with proposed protection blocks is operated with a switching frequency of 1 MHz in continuous conduction mode (CCM). In order to verify the proposed scheme, the buck converter has been designed using a 180 nm CMOS technology. The UVLO circuit is designed to track the input voltage and turns on/off the buck converter when the input voltage is higher/lower than 2.6 V, respectively. The OVP circuit blocks the buck converter's operation when the input voltage is over 3.3 V, thereby preventing the destruction of the devices inside the controller IC. The TSD circuit shuts down the converter's operation when the temperature is over $85^{\circ}C$. In order to verify the proposed scheme, these protection circuits were firstly verified through the simulation in SPICE. The proposed protection circuits were then fabricated and the measured results showed a good matching with the simulation results.

Maximum Torque Control of IPMSM Drive using Optimal Current (최적전류를 이용한 IPMSM 드라이브의 최대토크 제)

  • Baek, Jeong-Woo;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Mun, Ju-Hui;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.57-58
    • /
    • 2010
  • This paper proposes maximum torque control of IPMSM drive using optimal current. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi-MFC and ANN controller. Also, this paper proposes maximum control of IPMSM drive using approximation method. This method is decreased the burden of digital signal process(DSP) in calculation of optimal current. This paper proposes the analysis results to verify the effectiveness of the MFC and ANN controller. Also it verifies the validity of maximum torque control of IPMSM drive with optimal current.

  • PDF

Scheme to Improve the Line Current Distortion of PFC Using a Predictive Control Algorithm

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1168-1177
    • /
    • 2015
  • This paper presents a scheme to improve the line current distortion of power factor corrector (PFC) topology at the zero crossing point using a predictive control algorithm in both the continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The line current in single-phase PFC topology is distorted at the zero crossing point of the input AC voltage because of the characteristic of the general proportional integral (PI) current controller. This distortion degrades the line current quality, such as the total harmonic distortion (THD) and the power factor (PF). Given the optimal duty cycle calculated by estimating the next state current in both the CCM and DCM, the proposed predictive control algorithm has a fast dynamic response and accuracy unlike the conventional PI current control method. These advantages of the proposed algorithm lower the line current distortion of PFC topology. The proposed method is verified through PSIM simulations and experimental results with 1.5 kW bridgeless PFC (BLPFC) topology.

Robust and Unity Input Power Factor Control Scheme for Electric Vehicle Battery Charger (전기차 배터리 충전기용 강인한 단위 입력 역률 제어장치)

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • This study develops a digital control scheme with power factor correction for a front-end converter in an electric vehicle battery charger. The front-end converter acts as the boost-type switching-mode rectifier. The converter assumes the two roles of the battery charger, which include power factor control and robust charging performance. The proposed control scheme consists of a charging control algorithm and a grid current control algorithm. The scheme aims to obtain unity input power factor and robust performance. Based on the linear average model of the converter, a constant-current constant-voltage charging control algorithm that passes through only one proportional-integral controller and a current feed-forward path is proposed. In the current control algorithm, we utilized a second band pass filter, a single-phase phase-locked loop technique, and a duty-ratio feed-forward term to control the grid current to be in phase with the grid voltage and achieve pure sinusoidal waveform. Simulations and experiments were conducted to verify the effectiveness of the proposed control scheme, both simulations and experiments.

Real-Time Hardware Simulator for Grid-Tied PMSG Wind Power System

  • Choy, Young-Do;Han, Byung-Moon;Lee, Jun-Young;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • This paper describes a real-time hardware simulator for a grid-tied Permanent Magnet Synchronous Generator (PMSG) wind power system, which consists of an anemometer, a data logger, a motor-generator set with vector drive, and a back-to-back power converter with a digital signal processor (DSP) controller. The anemometer measures real wind speed, and the data is sent to the data logger to calculate the turbine torque. The calculated torque is sent to the vector drive for the induction motor after it is scaled down to the rated simulator power. The motor generates the mechanical power for the PMSG, and the generated electrical power is connected to the grid through a back-to-back converter. The generator-side converter in a back-to-back converter operates in current control mode to track the maximum power point at the given wind speed. The grid-side converter operates to control the direct current link voltage and to correct the power factor. The developed simulator can be used to analyze various mechanical and electrical characteristics of a grid-tied PMSG wind power system. It can also be utilized to educate students or engineers on the operation of grid-tied PMSG wind power system.