• Title/Summary/Keyword: Digital Terrain Model (DTM)

Search Result 83, Processing Time 0.022 seconds

A Study on the Terrain Analysis using TIN & GRID-Based Digital Terrain Model (TIN과 GRID기반의 수치지형모델을 이용한 지형분석에 관한 연구)

  • 윤철규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 1998
  • This paper performed terrain analysis using DTM(digital terrain model) with TIN/ GRID structure on PC environment. Contour layer from 1:5,000 scale map was used to produce DTM. DTHs were produced with and without considering breakline for each data structure. Processing time, file size, mean elevation and standard variation were analyzed for each DTM. slope map, aspect map were analyzed for grid structure with consideration of TEX>$5\times{5m},\;l0\times{10m},\;15\times{15m},\;l0\times{30m},\;45\times{45m},\;60\times{60m}$ cell size respectively. The results suggest following; The incorporation of breakline does improve mapping accuracy for highly disturbed landscape, Mean elevation doesn't increase as the grid size increases, while processing time, storage room is significantly lessened. Thus, the optimal grid size must be determined in advance for efficient application. slope decreases, while aspect increases as grid size is increasing.

  • PDF

A Study on the Interpolation of DTM Applying Moving Average and Linear Prediction Method (이동평균법과 선형예측법을 이용한 수치지형의 보간에 관한 연구)

  • 이석찬;조규전;최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.4 no.1
    • /
    • pp.58-71
    • /
    • 1986
  • A Digital Terrain Model (DTM) consists of two components;one is sampling of the terrain imformation, and the other is interpolation. The present study aims at the investigation of the accuracy and efficiency of Moving Average and Linear Prediction interpolation methods by numerical experiment. Basic input data are the elerations in square grid which procured by photogrammetry, and the accuracy of each interpolation is investigated on different grid size, terrain type and pattern of reference points.

  • PDF

A Study on Progressive Sampling with Distinct Morphologic Features (지성선을 이용한 밀도증가식 표본추출법에 관한 연구)

  • 조규전
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 1988
  • Digital Terrain Model is composed of two basic elements, namely, sampling and interpolation. They represent the procurement of data and the geometric reconstruction of terrain relief respectively. For evaluation DTM data, following two paremeters appear to be the most important factor, that is, the accuracy and efficiency and, in particular, the break point information significantly affect to the accuracy of DTM data. The main objective of this study is to improve the accuracy and efficiency of DTM by applying Progressive Sampling with distinct morphologic information. In this study, the total of 240 individual numerical tests has been implemented and the appropriate computer program is also developed for the test. The result of investigation shows that the Progressive Sampling with break point information improves the accuracy of DTM by 30 percent approximately.

  • PDF

Applications of Landsat Imagery and Digital Terrain Model Data to River Basin Analyses (Landsat 영상과 DTM 자료의 하천유역 해석에의 응용기법 개발)

  • 조성익;박경윤;최규홍;최원식
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.2
    • /
    • pp.117-131
    • /
    • 1986
  • The purpose of this study was to develop techniques acquiring hydrologic parameters that affect runoff conditions from Landsat imagery. Runoff conditions in a study area were analyzed by employing the U.S. Soil Conservation Service(SCS) Method. SCS runoff curve numbers(CN) were estimated by the computer analysis of Landsat imagery and digiral terrain model(DTM) data. The SCS Method requires land use/cover and soil conditions of the area as input parameters. A land use/cover map of 5 hydrological classes was produced from the Landsat multi-spectral scannerr imagery. Slope-gradient and contour and contour maps were also made using the DTM topographic data. Inundation areas depending on reservoir levels were able to be mapped on the Landsat scene by combining the contour data.

Earthwork Volume Computation by Digital Terrain Model (Digital Terrain Model을 이용(利用)한 토공량산정(土工量算定))

  • Lee, Suk Chan;Shin, Bong Hoo;Lee, Jae Hyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.83-90
    • /
    • 1985
  • According to development of the areial photogrammetry, it is uneconomical to acquire the terrain information and compute the earthwork volume of each building site by a field surveying which is used recently because it is acquired much money and time. The aim in the this thesis is to acquire the terrain information using the Digital Terrain Model (DTM) to gain in the aerial photograph and compute the rapid and economical earthwork carrying out digital test. Because of being little difference between the digital test and field (site) surveying in the earthwork volume, that result is fitter in preliminary planning than in practical planning to the extent.

  • PDF

Accuracy Assessment of DTM Generation Using LIDAR Data (LIDAR 자료를 이용한 DTM 생성 정확도 평가)

  • Yoo Hwan Hee;Kim Seong Sam;Chung Dong Ki;Hong Jae Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2005
  • 3D models in urban areas are essential for a variety of applications, such as virtual visualization, GIS, and mobile communications. LIDAR (Light Detection and Ranging) is a relatively new technology for obtaining Digital Terrain Models (DTM) of the earth's surface since manual 3D data reconstruction is very costly and time consuming. In this paper an approach to extract ground and non-ground points data from LIDAR data by using filtering is presented and the accuracy for generating DTM from ground points data is evaluated. Numerous filter algorithms have been developed to date. To determine the performance of filtering, we selected three filters which are based on the concepts for height difference, slope, and morphology, and also were applied two different data acquired from high raised apartments areas and low house areas. From the results it has been found that the accuracy for generating DTM from LIDAR data are 0.16 m and 0.59 m in high raised apartments areas and low house areas respectively. We expect that LIDAR data is used to generate the accurate DTM in urban areas.

TRN을 이용하는 헬리콥터 3차원 GPS 항법의 실용화 알고리즘 연구

  • Kim, Eui-Hong;Jeon, Hyeong-Yong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.249-250
    • /
    • 2008
  • 본 연구는 전년도 지형참조항법(TRN; Terrain Referenced Navigation)에 근거하는 3-D 헬리콥터 항법 시스템을 위한 알고리즘 개발의 후속 연구로서 실용적 완성을 위해 수행되었다. 본 연구에서 헬리콥터의 위성항법장치(GPS)로부터의 정보(X,Y,Z 좌표)는 자동차가 도로주행중 매 1초 간격으로 수신되는 GPGGA Code로 대체되었다. 비행체는 3차원 직교 좌표 체계(Cartesian coordinate system)로 표현되는 수치지형모델(DTM; Digital Terrain Model)상에서 시점(Origination)-종점(Destination) 분석 기법에 의해 항로를 결정한다. 본 시스템은 우선 조종사에게 지형의 사전 인식을 위해 시점-종점 주변 3차원 지형도와 항로의 종단면도를 보여준다. 본 시스템은 직접적인 지상 충돌을 피하기 위해 지형 여유 층면(Terrain Clearance Floor)의 개념을 도입, 기복 지형 표면에 일정 높이의 완충 공간을 설정한다. 본 시스템은 매초 GPS로부터 실시간 수신되는 X,Y,Z 위치와 DTM상의 x,y,z를 비교하여 만약 비행체가 완충 공간에 접근하게 되면 즉시 경고음과 메시지를 발한다. 수치지형모델은 (주)첨성대가 확보하고 있는 3초 간격의 DTM을 채택, 작성하였다.

  • PDF

Accuracy Evaluation and Terrain Model Creation of Urban Space using Unmanned Aerial Vehicle System (무인항공시스템을 이용한 도시공간 지형모델 생성 및 정확도 평가)

  • Do, Myung-Sik;Lim, Eon-taek;Chae, Jung-hwan;Kim, Sung-hun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.117-127
    • /
    • 2018
  • The author tried to propose the orthographic and DTM (digital terrain model) creation and evaluate the accuracy for an university campus using UAV (unmanned aerial vehicle) system. Most previous studies used GPS-based data, but in this paper, the observations of triangulation level measurements was used for comparison of accuracy. Accuracy analysis results showed that the operational requirements for aerial photographic standards are satisfied in all scenaries. The author confirmed availability in aviation photo measurements and applications using UAV (Drone). In order to create a sophisticated DTM and contour, we need to eliminate interference from building, trees, and artificial objects. The results of this study are expected to be used as the basis for future studies in the creation of DTM and the accuracy assessments using Drone.

Automatic Building Reconstruction with Satellite Images and Digital Maps

  • Lee, Dong-Cheon;Yom, Jae-Hong;Shin, Sung-Woong;Oh, Jae-Hong;Park, Ki-Surk
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.537-546
    • /
    • 2011
  • This paper introduces an automated method for building height recovery through the integration of high-resolution satellite images and digital vector maps. A cross-correlation matching method along the vertical line locus on the Ikonos images was deployed to recover building heights. The rational function models composed of rational polynomial coefficients were utilized to create a stereopair of the epipolar resampled Ikonos images. Building footprints from the digital maps were used for locating the vertical guideline along the building edges. The digital terrain model (DTM) was generated from the contour layer in the digital maps. The terrain height derived from the DTM at each foot of the buildings was used as the starting location for image matching. At a preset incremental value of height along the vertical guidelines derived from vertical line loci, an evaluation process that is based on the cross-correlation matching of the images was carried out to test if the top of the building has reached where maximum correlation occurs. The accuracy of the reconstructed buildings was evaluated by the comparison with manually digitized 3D building data derived from aerial photographs.

Tree Removal Filtering using Aerial Photographs DTM to Analyze Producing Section of Forest Soil Sediment Disaster (산지토사재해 발생구간 분석을 위한 항공사진 DTM에서의 수목필터링)

  • Woo, Choong-Shik;Youn, Ho-Joong;Jeong, Yong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.22-30
    • /
    • 2007
  • It is difficult to generate DTM using aerial photographs because trees usually cover disaster occurred areas. So, this study proposed how to filter by moving window using digital aerial photographs and generate accurate DTM. The results were compared with those of adaptive filtering by commercial digital photogrammetry software (Socet set) to find out the effect of tree removal by window size in forest soil sediment disaster. And then they were compared with DTM generated from LiDAR data. As a result, it was showed that the accuracy of moving filtering DTM was lower than that of LiDAR DTM while it was higher by 6m than that of Adaptive filtering.

  • PDF