• Title/Summary/Keyword: Digital Modulation Signal

Search Result 309, Processing Time 0.026 seconds

Performance of a 3-Dimensional Signal Transmission System (3차원 신호 전송시스템의 성능)

  • Kwon, Hyeock Chan;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2021-2026
    • /
    • 2016
  • In this paper, a system model for transmission of 3-dimensional (3-D) signals is presented and its performance is analyzed. Unlike 2-D signals, no quadrature form expression for the 3-D signals is available. Exploiting a set of orthogonal basis functions, the 3-D signals are transmitted. As a result of computer simulation using very higher-level signal constellations, the 3-D transmission system has significantly improved error performance as compared with the 2-D system. It is considered that the principal reason for such performance improvement is much increased minimum Euclidean distance (MED) of the 3-D lattice constellations compared with the corresponding 2-D ones. When the MEDs of 2-D and 3-D lattice constellation are compared to confirm the analysis, the MED of 3-D 1024-ary constellation is around 2.6 times larger than that of the quadrature amplitude modulation (QAM). Expanding the constellation size to 4096, the MED of 3-D lattice constellation is increased by 3.2 times of the QAM.

PAPR Improvement of OFDM-CQAM System Through Optimum Position Impulse Insertion Scheme in Frequency Domain (주파수영역 최적 위치 임펄스 삽입기법에 의한 OFDM-CQAM 시스템의 PAPR 개선)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.258-263
    • /
    • 2019
  • OFDM is popular digital communication method due to its immunity to multipath fading and capability of high speed data transmission, but it has disadvantage of high PAPR in transmission signal when many subcarrier modulated signal are added to the same phase. When frequency domain high amplitude impulse is inserted before IFFT in OFDM transmitter, the PAPR of OFDM signal in tme domain can be effectively reduced. In this paper, the degree of PAPR improvement of OFDM communication system with CQAM subcarrier modulation is analysed by adopting impulse insertion technique before IFFT of transmitter. Furthermore, it is verified that additional PAPR performance improvement can be obtained by finding optimum position of impulse insertion for maximizing PAPR reduction. Through computer simulation, the degree of PAPR improvement according to amplitude and position of inserted impulse is superior to conventional technique in OFDM-CQAM system.

A Design of Two-stage Cascaded Polyphase FIR Filters for the Sample Rate Converter (표본화 속도 변환기용 2단 직렬형 다상 FIR 필터의 설계)

  • Baek Je-In;Kim Jin-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.806-815
    • /
    • 2006
  • It is studied to design a low pass filter of the SRC(sample rate converter), which is used to change the sampling rate of digital signals such as in digital modulation and demodulation systems. The larger the conversion ratio of the sample rate becomes, the more signal processing is needed for the filter, which corresponds to the more complexity in circuit realization. Thus it is important to reduce the amount of signal processing for the case of high conversion ratio. In this paper it is presented a design method of a two-stage cascaded FIR filter, which proved to have reduced amount of signal processing in comparison with a conventional single-stage one. The reduction effect of signal processing turned out to be more noticeable for larger value of conversion ratio, for instance, giving down to 72% in complexity for the conversion ratio of 32. It has been shown that the reduction effect is dependent to specific combination of conversion ratios of the cascaded filters. So an exhaustive search has been performed in order to obtain the optimal combination for various values of the total conversion ratio. In this paper every filter is considered to be implemented in the form of a polyphase FIR filter, and its coefficients are determined by use of the Parks-McCllelan algorithm.

Frequency-Shifting Digital Demodulator by Bandpass Sampling (대역통과 샘플링을 이용한 주파수 천이 디지털 복조 시스템)

  • Moon, Sung-Bin;Kim, Sae-Yeon;Jung, Shin-Chul;Lee, Byung-Sub
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.36-44
    • /
    • 2000
  • A frequency-shifting technique that uses a digital filter in order to interpolate a bandpass-sampled signal at a low-pass position is investigated. The discussion focuses on the derivation of the required digital filter. It is shown that second-order bandpass sampling offers more flexibility than first-order bandpass sampling in the sense of sampling frequency choice. It is also shown that the well-known quadrature-sampling method for frequency-shifting is a special case of the general second-order sampling technique. The advantages of the mixer-free digital quadrature demodulations are increased flexibility for sampling frequency choice and high precision for I/Q component extraction, and this type of modulation can be applied for modern radar signal processing with high performance.

  • PDF

Design of a New 3-D 16-ary Signal Constellation with Constant Envelope (상진폭 특성을 가지는 새로운 3차원 16진 신호성상도의 설계)

  • Choe, Chae-Cheol;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2149-2156
    • /
    • 2011
  • In this paper, design of a new 3-dimensional (3-D) 16-ary signal constellation with constant envelope is presented and analyzed. Unlike the conventional 16-ary constellations, all signal points of the new constellation are uniformly located on the surface of a sphere so that they have a unique amplitude level and a symmetrical structure. When average power of the constellations is normalized, the presented 16-ary constellation has around 11.4% increased minimum Euclidean distance (MED) as compared to the conventional ones that have non-constant envelope. As a result, a digital communication system which exploits the presented constellation has 1.2dB improved symbol error rate (SER). While signal points of the conventional constant-envelope constellation are not distributed uniformly on the surface of a sphere, those of the proposed constellation has a completely symmetric distribution. In addition, the new signal constellation has much lower computational complexity for practical implementation than the conventional one. Hence, the proposed 3-D 16-ary signal constellation is appropriate for the application to a communication system which strongly requires a constant-envelope characteristic.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

A Study on the Design of a Beta Ray Sensor Reducing Digital Switching Noise (디지털 스위칭 노이즈를 감소시킨 베타선 센서 설계)

  • Kim, Young-Hee;Jin, Hong-Zhou;Cha, Jin-Sol;Hwang, Chang-Yoon;Lee, Dong-Hyeon;Salman, R.M.;Park, Kyung-Hwan;Kim, Jong-Bum;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2020
  • Since the analog circuit of the beta ray sensor circuit for the true random number generator and the power and ground line used in the comparator circuit are shared with each other, the power generated by the digital switching of the comparator circuit and the voltage drop at the ground line was the cause of the decreasein the output signal voltage drop at the analog circuit including CSA (Charge Sensitive Amplifier). Therefore, in this paper, the output signal voltage of the analog circuit including the CSAcircuit is reduced by separating the power and ground line used in the comparator circuit, which is the source of digital switching noise, from the power and ground line of the analog circuit. In addition, in the voltage-to-voltage converter circuit that converts VREF (=1.195V) voltage to VREF_VCOM and VREF_VTHR voltage, there was a problem that the VREF_VCOM and VREF_VTHR voltages decrease because the driving current flowing through each current mirror varies due to channel length modulation effect at a high voltage VDD of 5.5V when the drain voltage of the PMOS current mirror is different when driving the IREF through the PMOS current mirror. Therefore, in this paper, since the PMOS diode is added to the PMOS current mirror of the voltage-to-voltage converter circuit, the voltages of VREF_VCOM and VREF_VTHR do not go down at a high voltage of 5.5V.

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

Dual Mode Buck Converter Capable of Changing Modes (모드 전환 제어 가능한 듀얼 모드 벅 변환기)

  • Jo, Yong-min;Lee, Tae-Heon;Kim, Jong-Goo;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.40-47
    • /
    • 2016
  • In this paper, a dual mode buck converter with an ability to change mode is proposed, which is suitable particularly for portable device. The problem of conventional mode control circuit is affected by load variation condition such as suddenly or slowly. To resolve this problem, the mode control was designed with slow clock method. Also, when change from the PFM(Pulse Frequency Modulation) mode to the PWM(Pulse Width Modulation) mode, to use the counter to detect a high load. And the user can select mode transition point in load range from 20mA to 90mA by 3 bit digital signal. The circuits are implemented by using BCDMOS 0.18um 2-polt 3-metal process. Measurement environment are input voltage 3.7V, output voltage 1.2V and load current range from 10uA to 500mA. And measurement result show that the peak efficiency is 86% and ripple voltage is less 32mV.

Delta Sigma Modulation of Controller Input Signal for the LED Light Driver (시그마 델타 변조에 의한 LED 드라이버의 입력 콘트롤러 설계)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.151-155
    • /
    • 2016
  • In this paper, we present the LED dimming control system by using ADPCM (Adaptive Differential Pulse Code Modulation). This ADPCM apparatus accurately controls the LED current with high resolution reducing the RFI (radio frequency interference) due to the spreading out of the harmonics of current of pulses. Additionally, this makes it easier to increase the accuracy of control operation. This study introduces to make a digitally controlled circuit for controlling LED with high-energy efficient by adopting pulse current to LED. The LED current drive system we designed are two systems, the digitally-controlled unit and analog switching mode power supply unit, can be developed separately. The simulation shows the sigma delta modulation of digital to analog converter's output when the input level is 0.7. From this simulation, the output is approached to accurately 0.15% to target value with 510 pulses.