• Title/Summary/Keyword: Digital Computing Environment

Search Result 285, Processing Time 0.024 seconds

The Need and Improvement Direction of New Computer Media Classes in Landscape Architectural Education in University (대학 내 조경전공 교육과정에 있어 새로운 컴퓨터 미디어 수업의 필요와 개선방향)

  • Na, Sungjin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.1
    • /
    • pp.54-69
    • /
    • 2021
  • In 2020, civilized society's overall lifestyle showed a distinct change from consumable analog media, such as paper, to digital media with the increased penetration of cloud computing, and from wired media to wireless media. Based on these social changes, this work examines whether the use of computer media in the field of landscape architecture is appropriately applied. This study will give directions for new computer media classes in landscape architectural education in the 4th Industrial Revolution era. Landscape architecture is a field that directly proposes the realization of a positive lifestyle and the creation of a living environment and is closely connected with social change. However, there is no clear evidence that landscape architectural education is making any visible change, while the digital infrastructure of the 4th Industrial Revolution, such as Artificial Intelligence (AI), Big Data, autonomous vehicles, cloud networks, and the Internet of Things, is changing the contemporary society in terms of technology, culture, and economy among other aspects. Therefore, it is necessary to review the current state of the use of computer technology and media in landscape architectural education, and also to examine the alternative direction of the curriculum for the new digital era. First, the basis for discussion was made by studying the trends of computational design in modern landscape architecture. Next, the changes and current status of computer media classes in domestic and overseas landscape education were analyzed based on prior research and curriculum. As a result, the number and the types of computer media classes increased significantly between the study in 1994 and the current situation in 2020 in the foreign landscape department, whereas there were no obvious changes in the domestic landscape department. This shows that the domestic landscape education is passively coping with the changes in the digital era. Lastly, based on the discussions, this study examined alternatives to the new curriculum that landscape architecture department should pursue in a new degital world.

A Study on the Link Server Development Using B-Tree Structure in the Big Data Environment (빅데이터 환경에서의 B-tree 구조 기반 링크정보 관리서버의 개발)

  • Park, Sungbum;Hwang, Jong Sung;Lee, Sangwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • Major corporations and portals have implemented a link server that connects Content Management Systems (CMS) to the physical address of content in a database (DB) to support efficient content use in web-based environments. In particular, a link server automatically connects the physical address of content in a DB to the content URL shown through a web browser screen, and re-connects the URL and the physical address when either is modified. In recent years, the number of users of digital content over the web has increased significantly because of the advent of the Big Data environment, which has also increased the number of link validity checks that should be performed in a CMS and a link server. If the link validity check is performed through an existing URL-based sequential method instead of petabyte or even etabyte environments, the identification rate of dead links decreases because of the degradation of validity check performance; moreover, frequent link checks add a large amount of workload to the DB. Hence, this study is aimed at providing a link server that can recognize URL link deletion or addition through analysis on the B-tree-based Information Identifier count per interval based on a large amount of URLs in order to resolve the existing problems. Through this study, the dead link check that is faster and adds lower loads than the existing method can be performed.

Implementation of PersonalJave™ AWT using Light-weight Window Manager (경량 윈도우 관리기를 이용한 퍼스널자바 AWT 구현)

  • Kim, Tae-Hyoun;Kim, Kwang-Young;Kim, Hyung-Soo;Sung, Min-Young;Chang, Nae-Hyuck;Shin, Heon-Shik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.240-247
    • /
    • 2001
  • Java is a promising runtime environment for embedded systems because it has many advantages such as platform independence, high security and support for multi-threading. One of the most famous Java run-time environments, Sun's ($PersonalJave^{TM}$) is based on Truffle architecture, which enables programmers to design various GUIs easily. For this reason, it has been ported to various embedded systems such as set-top boxes and personal digital assistants(PDA's). Basically, Truffle uses heavy-weight window managers such as Microsoft vVin32 API and X-Window. However, those window managers are not adequate for embedded systems because they require a large amount of memory and disk space. To come up with the requirements of embedded systems, we adopt Microwindows as the platform graphic system for Personal] ava A WT onto Embedded Linux. Although Microwindows is a light-weight window manager, it provides as powerful API as traditional window managers. Because Microwindows does not require any support from other graphics systems, it can be easily ported to various platforms. In addition, it is an open source code software. Therefore, we can easily modify and extend it as needed. In this paper, we implement Personal]ava A WT using Microwindows on embedded Linux and prove the efficiency of our approach.

  • PDF

Convergence Implementing Emotion Prediction Neural Network Based on Heart Rate Variability (HRV) (심박변이도를 이용한 인공신경망 기반 감정예측 모형에 관한 융복합 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.33-41
    • /
    • 2018
  • The purpose of this study is to develop more accurate and robust emotion prediction neural network (EPNN) model by combining heart rate variability (HRV) and neural network. For the sake of improving the prediction performance more reliably, the proposed EPNN model is based on various types of activation functions like hyperbolic tangent, linear, and Gaussian functions, all of which are embedded in hidden nodes to improve its performance. In order to verify the validity of the proposed EPNN model, a number of HRV metrics were calculated from 20 valid and qualified participants whose emotions were induced by using money game. To add more rigor to the experiment, the participants' valence and arousal were checked and used as output node of the EPNN. The experiment results reveal that the F-Measure for Valence and Arousal is 80% and 95%, respectively, proving that the EPNN yields very robust and well-balanced performance. The EPNN performance was compared with competing models like neural network, logistic regression, support vector machine, and random forest. The EPNN was more accurate and reliable than those of the competing models. The results of this study can be effectively applied to many types of wearable computing devices when ubiquitous digital health environment becomes feasible and permeating into our everyday lives.

CNN-based Shadow Detection Method using Height map in 3D Virtual City Model (3차원 가상도시 모델에서 높이맵을 이용한 CNN 기반의 그림자 탐지방법)

  • Yoon, Hee Jin;Kim, Ju Wan;Jang, In Sung;Lee, Byung-Dai;Kim, Nam-Gi
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.55-63
    • /
    • 2019
  • Recently, the use of real-world image data has been increasing to express realistic virtual environments in various application fields such as education, manufacturing, and construction. In particular, with increasing interest in digital twins like smart cities, realistic 3D urban models are being built using real-world images, such as aerial images. However, the captured aerial image includes shadows from the sun, and the 3D city model including the shadows has a problem of distorting and expressing information to the user. Many studies have been conducted to remove the shadow, but it is recognized as a challenging problem that is still difficult to solve. In this paper, we construct a virtual environment dataset including the height map of buildings using 3D spatial information provided by VWorld, and We propose a new shadow detection method using height map and deep learning. According to the experimental results, We can observed that the shadow detection error rate is reduced when using the height map.

A study on ecosystem model of the magazines for smart devices Focusing on the case of magazine business in foreign countries (스마트 디바이스 잡지 생태계 모델 연구 - 외국 잡지의 비즈니스 사례를 중심으로)

  • Chang, Yong Ho;Kong, Byoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2641-2654
    • /
    • 2014
  • In the smart media environment, magazine industry has been experiencing a transition to ecosystem of value network, which includes high complexity and ambiguity. Using case study method, this article conducts research on digital convergence, the model of magazine ecosystem and adaptation strategy of global magazine companies. Research findings have it that the way of contents production of global magazines has been based on collaborative production system within communities, expert communities, creative users, media contents companies and magazine platform. The system shows different patterns and characteristics depending on magazine-driven platform, Platform-driven platform or user-driven platform. Collaboration system has been confirmed in various cases: Huffington Post and Zinio which collaborate with media contents companies, Amazon magazines and Bookish with magazine companies, Huffington Post and Wired with expert communities, and Flipboard with creative users and communities. Foreign magazine contents diverge into (paper, electronic, app and web magazine) as they start the lively trades of their contents on the magazine platform. In the area of contents uses, readers employ smart media technology effectively such as cloud computing, artificial intelligence and module individualization, making it possible for the virtuous cycle to remain in the relationship within communities, expert communities and creative users.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

A Study on the Research Trends for Smart City using Topic Modeling (토픽 모델링을 활용한 스마트시티 연구동향 분석)

  • Park, Keon Chul;Lee, Chi Hyung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.119-128
    • /
    • 2019
  • This study aims to analyze the research trends on Smart City and to present implications to policy maker, industry professional, and researcher. Cities around globe have undergone the rapid progress in urbanization and the consequent dramatic increase in urban dwellings over the past few decades, and faced many urban problems in such areas as transportation, environment and housing. Cities around the globe are in a hurry to introduce Smart City to pursue a common goal of solving these urban problems and improving the quality of their lives. However, various conceptual approaches to smart city are causing uncertainty in setting policy goals and establishing direction for implementation. The study collected 11,527 papers titled "Smart City(cities)" from the Scopus DB and Springer DB, and then analyze research status, topic, trends based on abstracts and publication date(year) information using the LDA based Topic Modeling approaches. Research topics are classified into three categories(Services, Technologies, and User Perspective) and eight regarding topics. Out of eight topics, citizen-driven innovation is the most frequently referred. Additional topic network analysis reveals that data and privacy/security are the most prevailing topics affecting others. This study is expected to helps understand the trends of Smart City researches and predict the future researches.

Implementation of the Large-scale Data Signature System Using Hash Tree Replication Approach (해시 트리 기반의 대규모 데이터 서명 시스템 구현)

  • Park, Seung Kyu
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.19-31
    • /
    • 2018
  • As the ICT technologies advance, the unprecedently large amount of digital data is created, transferred, stored, and utilized in every industry. With the data scale extension and the applying technologies advancement, the new services emerging from the use of large scale data make our living more convenient and useful. But the cybercrimes such as data forgery and/or change of data generation time are also increasing. For the data security against the cybercrimes, the technology for data integrity and the time verification are necessary. Today, public key based signature technology is the most commonly used. But a lot of costly system resources and the additional infra to manage the certificates and keys for using it make it impractical to use in the large-scale data environment. In this research, a new and far less system resources consuming signature technology for large scale data, based on the Hash Function and Merkle tree, is introduced. An improved method for processing the distributed hash trees is also suggested to mitigate the disruptions by server failures. The prototype system was implemented, and its performance was evaluated. The results show that the technology can be effectively used in a variety of areas like cloud computing, IoT, big data, fin-tech, etc., which produce a large-scale data.

  • PDF

Analyze Virtual Private Network Vulnerabilities and Derive Security Guidelines Based on STRIDE Threat Modeling (STRIDE 위협 모델링 기반 가상 사설망 취약점 분석 및 보안 요구사항 도출)

  • Kim, Da-hyeon;Min, Ji-young;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.27-37
    • /
    • 2022
  • Virtual private network (VPN) services are used in various environments related to national security, such as defense companies and defense-related institutions where digital communication environment technologies are diversified and access to network use is increasing. However, the number of cyber attacks that target vulnerable points of the VPN has annually increased through technological advancement. Thus, this study identified security requirements by performing STRIDE threat modeling to prevent potential and new vulnerable points that can occur in the VPN. STRIDE threat modeling classifies threats into six categories to systematically identify threats. To apply the proposed security requirements, this study analyzed functions of the VPN and formed a data flow diagram in the VPN service process. Then, it collected threats that can take place in the VPN and analyzed the STRIDE threat model based on data of the collected threats. The data flow diagram in the VPN service process, which was established by this study, included 96 STRIDE threats. This study formed a threat scenario to analyze attack routes of the classified threats and derived 30 security requirements for each element of the VPN based on the formed scenario. This study has significance in that it presented a security guideline for enhancing security stability of the VPN used in facilities that require high-level security, such as the Ministry of National Defense (MND).