• Title/Summary/Keyword: Digital Aerial Orthophoto

Search Result 38, Processing Time 0.025 seconds

PHOTOGRAMMETRIC PROCESSING OF HIGH MOUNTAINS IN NEPAL

  • Baral, Toya Nath
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.85-92
    • /
    • 2003
  • Application of traditional aerial survey technologies for topographic mapping purposes has a number of principal problems. The growing worldwide acceptance of digital orthophotos has understood this need. Many trekking and expedition teams are expecting digital orthophoto and consequently 3D animation of the highest peaks and possible trekking routes, camping sites and information on how difficult the routes may be. In recent years, inexpensive computers and advance of computer technologies contributed to the rapid development of digital photogrammetry (Dowman et al., 1992; Heipke, 1995). Successful implementation of digital photogrammetric workstations in mapping have been found in various disciplines (Chen et al., 1998; Skalet et al., 1992). This paper highlights the results of the conventional photogrammetry and the possible advantages of digital photogrammetry over these and also the problems, issues and implications during digital Photogrammetric processing of high mountainous region in Asia.

  • PDF

Extracting Roof Edges of Small Buildings from Digital Aerial Photographs (수치항공사진으로부터 소형건물의 지붕 경계 추출)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Kim, Sung-Hoon;Lee, Kyu-Dal
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.5
    • /
    • pp.425-435
    • /
    • 2014
  • The research for extracting man-made features such as building and road from the aerial photograph or satellite imagery has been performed actively. As lately the resolution of digital aerial photographs was improved, unwanted features(noise) would be often detected. An edge detection algorithm is developed to make up for such a noise problem, make boundaries of wanted objects clear and extract only needed features. The algorithm developed in this research performs separating RGB channels, differencing between channels, transforming in to binary images, excluding noises and restoring shapes, and edge extraction in order. The images to be used for edge detection are prepared through bundle adjustment, DTM extraction, orthorectification and mosaicking. The roof edges of small building on preprocessed digital aerial orthophotos were extracted using the algorithm developed in this study. The validity of the algorithms was proved by comparing edge results of small building extracted in this study with those of conventional methods.

Investigation of Long-Term Shoreline Changes Using Aerial Images (항공사진을 이용한 장기해안선변화 조사)

  • 정승진;김규한;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • In this paper, the affine transformation method that is more simpler compare with digital orthophoto method is used analyzed the long-term shoreline change, and accuracy estimation was carried out. As a result of this study, it was able to check that the shoreline change on Namhangjin coast had eroded significantly compare with the past. Moreover, as a result of accuracy estimation, it shows that the RMS error around shoreline was about 1-2 m. In consideration that maximum allowable error shown in aerial photogrammetry specification is within 2 m, therefore, analysis results of shoreline change using affine transformation method on aerial images is reliable.

Constructing Forest Information Management System using GIS and Aerial Orthophoto (GIS와 항공정사사진을 이용한 산림정보 관리시스템 구축)

  • Kim, Joon-Bum;Jo, Myung-Hee;Kwon, Tae-Ho;Kim, In-Ho;Jo, Yun-Won;Shin, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.57-68
    • /
    • 2004
  • Recently in order to more effectively and scientifically process forest official tasks, which have been focused on documents and inventories, they should be applied with the up-to-date spatial information technologies. Especially, the forest resource information management based on GIS(geographic information system) and aerial orthophoto is expected not only to play an important role as DSS(decision support system) for domestic forest conservation policy and forestry development industry but also to service forest resource information toward people such as the owners of a mountain rapidly. In this study, the important forest information such as digital topography map, digital forest type map, digital forest cadastral map, digital aerial photographs and attribute data were first reprocessed and constructed in DBMS(data base management system). In addition, forest officials could analyze and retrieve forest information by using detail sub-application systems such as forest cadastral retrieval, forest land development information management, reserved forest information management and forest resource information retrieval. For this, the user interface is developed by using Visual Basic 6.0 and MapObjects 2.1 of ESRI based on CBD(component based development) technology. The result of developing this system will not only perform constructing economical forest and better environment but also be the foundation of domestic spatial technology for forest resource management.

  • PDF

Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle (무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석)

  • Park, Jin Hwan;Lee, Ki Rim;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.263-270
    • /
    • 2018
  • Land surface temperature is known to be an important factor in understanding the interactions of the ground-atmosphere. However, because of the large spatio-temporal variability, regular observation is rarely made. The existing land surface temperature is observed using satellite images, but due to the nature of satellite, it has the limit of long revisit period and low accuracy. In this study, in order to confirm the possibility of replacing land surface temperature observation using satellite imagery, images acquired by TIR (Thermal Infrared) sensor mounted on UAV (Unmanned Aerial Vehicle) are used. The acquired images were transformed from JPEG (Joint Photographic Experts Group) to TIFF (Tagged Image File Format) format and orthophoto was then generated. The DN (Digital Number) value of orthophoto was used to calculate the actual land surface temperature. In order to evaluate the accuracy of the calculated land surface temperature, the land surface temperature was compared with the land surface temperature directly observed with an infrared thermometer at the same time. When comparing the observed land surface temperatures in two ways, the accuracy of all the land covers was below the measure accuracy of the TIR sensor. Therefore, the possibility of replacing the satellite image, which is a conventional land surface temperature observation method, is confirmed by using the TIR sensor mounted on UAV.

Demonstration of UAS Image-Based Intellectual Demarcation in Cadastral Reexaminationy (지적재조사에서 UAS 영상 기반 지적 경계확정 시범 연구)

  • Kim, Dal-Joo;Kang, Joon-Oh;Han, Woong-ji;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • The cadastral rehabilitation project, which has been implemented since 2012, is a project to re-examine the national land that is not in conformity with the cadastral map, There is a lot of trouble in securing financial resources for business execution. This study examines the utility of UAS(Unmanned Aerial System) image - based cadastral demarcation as an alternative to budget reduction in the current state of cadastral rehabilitation, reasonable boundary adjustment, UAV(Unmanned Aerial Vehicles) is used to create 3D models and orthoimages of business districts, and to check accuracy by superimposing and comparing with digital maps of NGII(National Geographic Information Institute). As a result of the study, the accuracy of the 3D model and the orthoimage through the SfM(Structure-from-Motion) - based image interpretation of the digital map of the NGII were derived. In particular, we confirmed the similarity of UAS-based orthoimage with the cadastral boundaries affirmation, It is anticipated that the cost saving effect of current survey and boundary survey can be expected. In addition, it is easy to prepare a report to reduce civil complaints, which is a problematic element of the adjustment.

Orthophoto Application for Geo-spatial Information Acquisiton of Construction Area(DAM) (공사지역(댐)의 지형정보구축을 위한 정사영상의 활용)

  • 한승희;이형석;이성순
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.395-403
    • /
    • 2000
  • It is so sensitive that the matter of compensation for private possessions caused in the course of public construction planning is very important. Especially, more logical planning is necessary when the dam be constructed, because it is mainly controlled by the surface of water, and if that planning is made public, artificial change is occurred in land use in that area for the purpose of rising the compensation. In this study, the plan for the application of aerial photo based ortho image was drew up for solving these problems and for the rational, rapid compensation. Ortho image was made by aerial photo, used as reading material for the change in land use. The modeling of drainage basin, came under the planning surface of water, and the 3D simulation were performed for the scene analysis, the change understanding in land use for a lot number in a certain period by overlapping the digital image, the digital land registration map, and the digital topography map as well as the analysis of the admitted land followed by the height of reservoir water.

  • PDF

Development of Digital Photogrammetric Systems for Three-Dimensional Topographic Information Analysis (3차원 지형정보분석을 위한 수치사진측량시스템 개발)

  • 유환희;안충현;오성남;성민규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • Lately, with the development of the fields of computer and photogrammetry, Digital Photogrammetric Systems are widely used for the generation of GIS basemap, the acquisition of topographic information and DEM, the formation of digital orthophoto, three-dimensional viewing and so on. According as the demand for the systems is rapidly increasing, we suggest keenly the necessity of domestic technical development, because all of these systems depend on foreign technology until now. In this study, by using digital photogrammetry method, with Visual C++ language, we have developed Digital Photogrammetric Systems for Windows which is able to get three-dimensional coordinates through interior orientation, exterior orientation, epipolar line, image matching from a pair of aerial photos taken with metric camera. This system consists of not only a module which can revise digital map that is being made at National Geographic Institute as a part of data construction project of National Geographic Information System, but also a module which can view three-dimensional image on the screen monitor by using anaglyph for three-dimensional analysis. The digital photogrammetry modules developed in this study are expected to be used as primary modules for the effective management of the urban as well as main modules in developing professional digital photogrammetric systems.

  • PDF

The Acquisition of Geo-spatial Information by Using Aerial Photo Images in Urban Area (항공사진 영상을 이용한 도심지역의 지형공간정보 취득)

  • 이현직;김정일;황창섭
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2003
  • Generally, the latest acquisition method of geo-spatial informations in urban area is executed by generation of digital elevation model (DEM) and digital ortho image by digital photogrammetry method which is used large scale photo image. However, the biggest problem of this method is coarse accuracy of DEM which is automatically generated by digital photogrammetry workstation system. The coarse accuracy of DEM caused geo-spatial information in urban area to reduce of accuracy. Therefore, this study is purposed to increase of DEM accuracy which is applied to method terrain classification in urban area. As the results of this study, the proposed method of this study which is increased to accuracy of DEM by classification of terrain is better than accuracy of DEM which is automatically generated by digital photogrammetry workstaion system. And, the edge detection method which is proposed by this study is established to capability of 3D digital mapping in urban area.

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.