• Title/Summary/Keyword: Digester

Search Result 176, Processing Time 0.027 seconds

Effects of Polyurethane as Support Material for the Methanogenic Digester of a Two-Stage Anaerobic Wastewater Digestion System

  • Woo, Kyung-Soo;Yang, Han-Chul;Lim, Wang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.14-17
    • /
    • 2002
  • To increase the efficiency of a two-stage anaerobic wastewater digestion system, various polymers were added to the methanogenic reactor as supports. The addition of polyurethane addition (6%, w/v) to the methanogenic reactor facilitated the organic loading rate (2-day Hydraulic Retention Time), higher than that of the conventional methanogenic reactor (6-day HRT). During the operation of the polyurethane-added reactor, a significant decrease in the organic mass in the effluent (COD 5-6 kg/l) was achieved, compared to that of the conventional reactor (COD 15-20 kg/l). The methane gas production rate also improved about 3-fold in the polyurethane-added reactor. More biomass was found to accumulate in the polyurethane-liquid phase (volatile solid, 26-28kg) than in the free-liquid phase (volatile solid, 5- 7 kg/l) after 90 days of operation. A scaled-up experiment with a polyurethane-added 2.5-1 reactor confirmed the previous results, and no adverse effects such as plugging or channeling due to decreased efficiency was observed even after 4 months of operation.

A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends

  • Van, Dinh Pham;Fujiwara, Takeshi;Tho, Bach Leu;Toan, Pham Phu Song;Minh, Giang Hoang
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • With benefits to the human health, environment, economy, and energy, anaerobic digestion (AD) systems have attracted remarkable attention within the scientific community. Anaerobic digestion system is created from (bio)reactors to perform a series of bi-metabolism steps including hydrolysis/acidogenesis, acetogenesis, and methanogenesis. By considering the physical separation of the digestion steps above, AD systems can be classified into single-stage (all digestion steps in one reactor) and multi-stage (digestion steps in various reactors). Operation of the AD systems does not only depend on the type of digestion system but also relies on the interaction among growth factors (temperature, pH, and nutrients), the type of reactor, and operating parameters (retention time, organic loading rate). However, these interactions were often reviewed inadequately for the single-stage digestion systems. Therefore, this paper aims to provide a comprehensive review of both single-stage and multi-stage systems as well as the influence of the growth factors, operating conditions, and the type of reactor on them. From those points, the advantages, disadvantages, and application range of each system are well understood.

TREATMENT OF FOODWASTE AND POSPHORUS REMOVAL USING STRUVITE CRYSTALLIZATION IN HYBRID ANAEROBIC REACTOR WITH SAC MEDIA

  • Park, In-Chul;Kim, Dong-Su;Kim, Sung-Man;Lee, Jung-Jun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.129-132
    • /
    • 2001
  • The purpose of this research was to understand possibility of foodwaste treatment by hybrid anaerobic reactor(HAR). The Possibility of methane utility and applicability of hybrid reactor system using foodwaste as substrate was investigated. The maximum loading rate and optimized operational conditions were determined. Hybrid anaerobic reactor was filled with packing material 50% of its total volume between the tube and the outer surface. The packing material used was randomly packed open-pore synthesis activated ceramic(SAC) media as support media for microbial attachment, growth, and chemical stability protected bacteria from effect of organic acid accumulation. In this research, although foodwaste has high concentrations C $l^{[-10]}$ and S $O_{4}$$^{2-}$ concentration the possibility of foodwaste anaerobic treatment was when foodwaste is treated by anaerobic digestion, this study focused on the possibility using C $H_4$ gas made under the anaerobic treatment as an alternative energy source. Other objective of this research is to study struvite formation and crystal forms in anaerobic digester. HAR is used to investigate phosphate crystallization without the addition of chemicals.

  • PDF

Numerical Model for SBR Aerobic Digestion Combined with Ultrasonication and Parameter Calibration (초음파 결합형 SBR 호기성 소화의 모델과 매개변수의 보정)

  • Kim, Sunghong;Lee, Inho;Yun, Jeongwon;Lee, Dongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.457-468
    • /
    • 2013
  • Based on the activated sludge model(ASM), a mathematical model which represents the aerobic sludge digestion by sequencing batch reactor(SBR) combined with ultrasonic treatment was composed and performed in this study. Aerobic digestion using sequencing batch reactor(SBR) equipped with ultrasound treatment was also experimented for the purpose of parameter calibration. Most of the presented kinetic parameters in ASM or ASM2 could be used for the aerobic digestion of sludge but the parameters related in hydrolysis and decay rate needed modification. Hydrolysis rate constant of organic matter in aerobic condition was estimated at $0.3day^{-1}$ and the maximum growth rate for autotrophs in aerobic condition was $0.618day^{-1}$. Solubilization reactions of particulate organics and nitrogen by ultrasonication was added in this kinetic model. The solubilization rate is considered to be proportional to the specific energy which is defined by specific ultrasound power and sonication time. The solubilization rate constant by ultrasonication was estimated at $0.202(W/L)^{-1}day^{-1}$ in this study. Autotrophs as well as heterotrophs also decomposed by ultrasonic treatment and the nitrification reaction was limited by the lack of autotrophs accumulation in the digester.

A study on Enhanced Efficiencies of Methane Fermented Alcohol Wastewater Treatment by Supplement of Nutrients (영양물질 주입에 의한 메탄 발효 주정폐액의 효율증진에 관한 연구)

  • 안승구;이인학;진서형
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.40-49
    • /
    • 1997
  • In Korea, naked barley and tapioca are main raw materials for the production of fermentation ethyl alcohol, and one million drums bf 95% fermentation ethyl alcohol is produced per year by use of them. Stillage of alcoholic fermentation is mostly digested by methane fermentation process, and methane gas occured if methane fermentation process is recovered and mixed with fuel to decrease 25-30% for total fuel used in factories. In the anaerobic digestion process of naked barley stillage, supplement of nutrients is necessary to slove the problems caused by inhibitory materials contained if stillage and deficiency of nutrients. Therefore, the objective of this study was to examine why the anaerobic digesters using the naked barley distillery wastewater have shown the poor digestability frequently and how to control it. As the poor digestion was supposed to be occurred by the lack of iron as trace nutrient, the experiments were carried out to find out the optimum dosage and the way of addition of iron and to assess the quantitative evaluation of the type of iron in digesters. Initially, bottle test as batch digesters and lab-scaled continuous flow digesters were used in order to determine the digestion characteristics with tapioca and naked barley distillery wastewater. According to the results of batch tests, the poor digestion was caused by volatile fatty acids and could be improved by adding of calcium. The activity of the methanogenic bacteria were increased remarkably when the iron was added to the digester in the form of mixture with substrates.

  • PDF

Improvement of treatment efficiency for sanitary treatment facilities by process modifications (분뇨처리장의 공정개선에 의한 처리효율 향상에 관한 연구)

  • Lee, Chan Won;Kim, Seung Hyeon;Kim, Chang Su;Mun, Seong Won;Jeon, Hong Pyo;Yun, Jong Seop
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.571-579
    • /
    • 2004
  • There is a need to improve the efficiency of the existing sanitary treatment facilities, because the effluent standard becomes more stricter and septic sludge increased. Thus, operating processes of sanitary treatment system in M city changed with installation of additional facilities. Process modifications were as follows: Dilution water was added to the next process after primary aeration tank. Some secondary sedimentation sludge was recycled to primary aerator so that most of the organics were stabilized in primary aeration tank under automatic control of dissolved oxygen. The line of effluent from dewatering process flowing to the activated sludge tank was changed to the primary aerator. The primary sedimentation sludge line was linked to a thickener. Polymer was added to the activated sludge tank. The effluent of primary aerator and aerobic digester was recycled from the 5th to the 1st sector. As consequencies of above process modifications, the improvement of removal efficiency was achieved as BOD 54%, COD 42%, SS 61%, T-N 39%, and T-P 12%, respectively.

Co-digestion of Thermophilic Acid-fermented Food Wastes and Sewage Sludge (음식물찌꺼기 고온산발효산물과 하수슬러지의 혼합처리)

  • Ahn, Chul-Woo;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.897-905
    • /
    • 2006
  • This study has been conducted to investigate biodegradation characteristics and optimum mixing ratio for co-digestion with thermophilic acid-fermented food waste and sewage sludge using batch anaerobic digester. As the basis operating conditions for anaerobic digestion, the reaction temperature was controlled $35{\pm}1^{\circ}C$ and stirrer was set 70rpm. Thermophilic acid-fermented food waste and sewage sludge were mixed at the ratio of 10:0, 7:3, 5:5, 3:7, 0:10 and 5;5(food waste : sewage sludge) as the influent substrates. In results of co-digestion according to mixing ratio of thermophilic fermented food wastes and sewage sludge in batch mesophilic anaerobic digestion reactor, $385mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio was more than that of any other mixing ratios. Compared with $293mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio of food wastes and sewage sludge, pretreatment of food wastes by thermophilic acid fermentation was more effective in co-digestion with sewage sludge.

Improvement of Power Generation of Microbial Fuel Cells using Maximum Power Point Tracking (MPPT) and Automatic Load Control Algorithm (최대전력점추적방법과 외부저항 제어 알고리즘을 이용한 미생물연료 전지의 전력생산 최대화)

  • Song, Young Eun;Kim, Jung Rae
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • A microbial fuel cell (MFC) and bioelectrochemical systems are novel bioprocesses which employ exoelectrogenic biofilm on electrode as a biocatalyst for electricity generation and various useful chemical production. Previous reports show that electrogenic biofilms of MFCs are time varying systems and dynamically interactive with the electrically conductive media (carbon paper as terminal electron acceptor). It has been reported that maximum power point tracking (MPPT) method can automatically control load by algorithm so that increase power generation and columbic efficiency. In this study, we developed logic based control strategy for external load resistance by using $LabVIEW^{TM}$ which increases the power production with using flat-plate MFCs and MPPT circuit board. The flat-plate MFCs inoculated with anaerobic digester sludge were stabilized with fixed external resistance from $1000{\Omega}$ to $100{\Omega}$. Automatic load control with MPPT started load from $52{\Omega}$ during 120 hours of operation. MPPT control strategy increased approximately 2.7 times of power production and power density (1.95 mW and $13.02mW/m^3$) compared to the initial values before application of MPPT (0.72 mW and $4.79mW/m^3$).

Anaerobic Treatment of Food Waste Leachate for Biogas Production Using a Novel Digestion System

  • Lim, Bong-Su;Kim, Byung-Chul;Chung, In
    • Environmental Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2012
  • In this study, the performance of new digestion system (NDS) for the treatment of food waste leachate was evaluated. The food waste leachate was fed intermittently to an anaerobic reactor at increasing steps of 3.3 L/day (hydraulic retention time [HRT] = 30 day), 5 L/day (HRT = 20 day), and finally 10 L/day (HRT = 10 day). In the anaerobic reactor, the pH and alkalinity were maintained at 7.6 to 8.2 and 8,940-14,400 mg/L, respectively. Maximum methane yield determined to be 0.686L $CH_4$/g volatile solids (VS) containing HRT over 20 day. In the digester, 102,328 mg chemical oxygen demand (COD)/L was removed to produce 350 L/day (70% of the total) of biogas, but in the digested sludge reduction (DSR) unit, only 3,471 mg COD/L was removed with a biogas production of 158 L/day. Without adding any chemicals, 25% of total nitrogen (TN) and 31% of total phosphorus (TP) were removed after the DSR, while only 48% of TN and 32% of TP were removed in the nitrogen, phosphorus, and heavy metals (NPHM) removal unit. Total removal of TN was 73% and total removal of TP was 63%.

Pilot-scale Study on Nitrogen Removal of Effluent from Biogas Plant (바이오가스 플랜트 처리수의 고농도 질소 제거)

  • Yoo, Sungin;Yu, Youngseob;Lee, Yongsei;Park, Hyunsu;Yoo, Heechan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.175.1-175.1
    • /
    • 2011
  • A rotating activated bacillus contactor (RABC) process with a series of aerobic reactors was tested in pilot scale to treat digested liquid from an anaerobic digester treating swine wastewater and sewage sludge. The influent (digested liquid) for the RABC process showed C/N ratios less than 2 as a typical feature of effluent from anaerobic digesters. The pilot process, which consists of three 3 RABC reactors, four aerobic tanks and a sedimentation tank, was operated for 210 days with a hydraulic retention time of 20 days without pH and temperature control. Since the Bacillus-enriched aerobic reactors shows high efficiencies of nitrogen removal at low DO levels less than 1.0 mg/L, they were operated at reduced aeration intensities. With relatively low concentrations of organics in comparison with nitrogen concentrations, the RABC process tested in this study showed stable and high nitrogen and organics removal efficiencies over 80%. The nitrogen removal process tested in this study was proven to be an effective and operation-cost saving (lower aeration) method to remove nitrogen without adding external carbon sources to meet the optimum C/N ratio.

  • PDF