• Title/Summary/Keyword: Diffusivity

Search Result 740, Processing Time 0.025 seconds

Simple approach to calculate chloride diffusivity of concrete considering carbonation

  • Yoon, In-Seok
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 2009
  • Chloride diffusivity of concrete is a crucial material parameter for service life determination and durability designing of marine concrete. Many research works on this issue have been conducted, varying from empirical solutions obtained experimentally to image analysis, based on multi-scale modeling. One of the simple approaches is to express the chloride diffusivity of concrete by a multi-factor function, however, the influences of various factors on the chloride diffusivity are ambiguous. Furthermore, the majority of these research works have not dealt with the carbonation process of concrete, although this process affects the chloride diffusivity of concrete significantly. The purpose of this study is to establish a simple approach to calculate the chloride diffusivity of (non)carbonated concrete. The chloride diffusivity of concrete should be defined, based on engineering and scientific knowledge of cement and concrete materials. In this paper, a lot of parameters affecting the chloride diffusivity, such as the diffusivity in pore solution, tortuosity, micro-structural properties of hardened cement paste, volumetric portion of aggregate, are taken into consideration in the calculation of the chloride diffusivity of noncarbonated concrete. For carbonated concrete, reduced porosity due to carbonation is calculated and used for calculating the chloride diffusivity. The results are compared with experimental data and previous research works.

Constitution of diffusivity variation system by the smooth morph of the material

  • Kim, Jeong-lae;Hwang, Kyu-sung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.39-44
    • /
    • 2018
  • Wideness variation technique is compounded the smooth diffusivity-vibration status of the fulgurate-space realization level (FSRL) on the wideness realization morph. The realization level condition by the wideness realization morph system is associated with the diffusivity-vibration system. As to search a position of the dot situation, we are acquired of the wideness value with constructed-point point by the diffusivity upper structure. The concept of realization level is composed the reference of fulgurate-space level for variation signal by the wideness vibration morph. Further displaying a smooth variation of the FSRL of the maximum-minimum in terms of the diffusivity-vibration morph, and wideness position vibration that was the a wideness value of the far variation of the $Wid-rm-FA-{\alpha}_{MAX-MIN}$ with $23.24{\pm}3.37units$, that was the a wideness value of the convenient variation of the $Wid-rm-CO-{\alpha}_{MAX-MIN}$ with $7.83{\pm}1.32units$, that was the a wideness value of the flank variation of the $Wid-rm-FL-{\alpha}_{MAX-MIN}$ with $2.99{\pm}0.51units$, that was the a wideness value of the vicinage variation of the $Wid-rm-VI-{\alpha}_{MAX-MIN}$ with $0.51{\pm}(-0.01)units$. The diffusivity vibration will be to evaluate at the smooth ability of the diffusivity-vibration morph with constructed-point by the wideness realization level on the FSRL that is displayed the fulgurate-space morph by the realization level system. Diffusivity realization system will be possible to control of a morph by the special signal and to use a wideness data of diffusivity vibration level.

Simulated Distribution Characteristics of Surface Temperature on Irradiating of a Laser

  • Lee, Young-Wook;Yeon, Sang-Ho
    • International Journal of Contents
    • /
    • v.5 no.2
    • /
    • pp.16-19
    • /
    • 2009
  • In this paper, we concern about the distribution characteristics of surface temperature by the increment of time, diffusivity and heat flux on irradiating of a laser. The penetration depth corresponding to the induced constant heat flux or irradiated laser, is simulated by a computer algorithm. The distribution of temperature versus penetration depth for the variation of time and diffusivity is characterized at the constant heat flux and on irradiating of a laser. The temperature of constant heat flux at the fixed diffusivity or time, is decreased by the pattern of exponential function as the time t or diffusivity a is increased (a=10, 100, 1000). The temperature of constant heat flux is not changed but exponentially fixed with the increasing diffusivity and the fixed time. On the other hand, the temperature of laser at the fixed diffusivity or time is decreased linearly. Our results show that the characteristics of the simulated surface temperature in a semi-infinite solid are similar to the graphs on theoretical consideration.

Enhancement of Surface Diffusivity for Waviness Evolution on Heteroepitaxial Thin Films

  • Kim, Yun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.287-292
    • /
    • 2014
  • The present study deals with a numerical analysis on the island growth of heteroepitaxial thin-films through local surface diffusivity enhancement. A non-linear governing equation for the surface waviness evolution in lattice-mismatched material systems is developed for the case of spatially-varying surface diffusivity. Results show that a flat film that is stable under constant diffusivity conditions evolves to form nanostructures upon externally-induced spatial diffusivity modulation. The periodicity of waviness can be controlled by changing the modulation parameters, which allows for generation of pattern arrays. The present study therefore points towards a post-deposition treatment technique that achieves controllability and order in the structure formation process for applications in nanoelectronics and thin-film devices.

Measurements of Thermal Diffusivity of Heavy Rolled Low Carbon Steel Plate With Laser Flash Technique (레이저 섬광법에 의한 압연된 저탄소강 판재의 열확산계수 측정)

  • 배신철;임동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.157-171
    • /
    • 1990
  • The heat transfer problem associated with pulse technique for measuring thermal diffusivity was solved by means of Green function. The obtained general solution was discussed so as to apply for all possible cases; kinds of boundary condition and heat source, irradiation positions of heat pulse, radius of heat pulse, one-and two-dimensional heat flow, finite pulse time effects and radiation heat loss systems. Experimentally, the laser flash lamp was used as heat source for measuring thermal diffusivity of low carbon, aluminium chilled steel plate, which was heavily rolled in order to measure the variation of thermal diffusivity in the temperature range from room temperature through 500.deg. C. The derived results are (1) materials produced from same furnace showed a somewhat different thermal diffusivity values. (2) the thermal diffusivity value of rolled material was smaller than unrolled material and the difference decreased as increasing temperature. (3) the thermal diffusivity value of an annealed and temper rolled material was larger than the value of a cold rolled material, even thought smaller than unrolled material. (4) In case of heavy rolled material, there was no consistent relationships between the thermal diffusivity and the reduction in thickness.

A Study on Thermal Diffusivity Measurement by Improvement of Laser Flash Uniformity Using an Optical Fiber (광섬유를 이용한 레이저섬광의 균일분포 증진효과에 따른 열확산계수 측정에 관한 고찰)

  • Lee, Won-Sik;Bae, Shin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1073-1082
    • /
    • 1998
  • When thermal diffusivity is measured by laser flash method, the thermal diffusivity call be calculated front the assumption of the uniformly heated whole surface of the specimen. It has been known that the approximate 5% error is made by the non-uniform energy distribution on the specimen surface of laser pulse heat source. In this study, to obtain the highly-uniformed laser beam, which has both the low non-uniform heating error from non-uniform laser beam and the energy loss, research was carried out on no transmitting loss by optical fiber and high repetitions. In addition, heating error and thermal diffusivity were measured as the measuring positions were varied and compared with the results using the uniform and the non-uniform laser beams. In addition, dole to using the uniformalized laser beam, the whole surface of the specimen was heated uniformly and as a result, it was the thought that this was very effective to reduce the variations of the errors of the thermal diffusivity as the measuring positions were varied. It can be obtained that when the thermal diffusivity of POCO-AXM-5Q1 of SRM in NBS was measured with both the uniform and the non-uniform laser beams, the dispersion error of the former was from 2 to 2.5%, which was more improved than that of the latter.

Molecular Diffusion of Water in Paper( I )-Steady-State Diffusion Experiment for the Evaluation of Water Vapor-proof Properties of Paper- (종이내 수분확산(제1보)-종이의 방습성 평가를 위한 수증기의 정류상 확산 실험-)

  • Yoon, Sung-Hoon;Jeon, Yang;Ow, Say-Kyoun;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.1
    • /
    • pp.59-70
    • /
    • 1998
  • A steady-state molecular diffusion experiment was conducted to evaluate the water vapor proof properties of paper Handsheets prepared from unbleached Itraft pulps(UKP) and old newspapers(ONP) and four different types of polymer-laminated white duplex board were tested under appropriate standard conditions. The diffusivity was determined on the basis of the Fickean first law. Results obtained from this study can be summarized as follows ; 1. The diffusivity data for handsheets showed about $10^{-5}cm^2/min$. whereas polymer-laminated paperboards had remarkably improved water-vapor resistance with about $10^3 to 10^4$ times lower diffusivity : 2. Sheet basis weight, wet-swelling and sizing degree had little influence on the diffusivity of paper; 3 Linear relationship existed between sheet density and diffusivity, and, 4. Highly sfgnificant linear relationship could be observed between diffusivity and Darcy s gas permeability. Results indicate that diffusivity, an intrinsic property of paper, can provide a valuable information for precise evaluation and improved quality control of water-vapor proof properties of paper.

  • PDF

A Study on Estimation of Vertical Diffusivity in Fractured Bedrock Aquifer (단열암반 대수층에서 수직분산도 추정에 관한 연구)

  • 이진용;이강근;정형재;배광옥
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.247-250
    • /
    • 2000
  • This study focused on developing a convolution solution for estimating vertical diffusivity of a less permeable hydrogeologic unit in a bedrock aquifer. The diffusivity and corresponding hydraulic conductivity were estimated using the developed convolution equation. An application case was presented in this study.

  • PDF

An Experimental Study of Transient Hot-wire Sensor Module for Measuring Thermal Diffusivity of Nanofluids (나노유체의 열확산율 측정을 위한 비정상열선법 센서모듈 실험)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • A technique for measuring the thermal diffusivity of nanofluids is proposed in this study. In theory, it has been well known that the transient hot-wire method can be used to measure the thermal conductivity and diffusivity of fluids simultaneously. However, when traditional methods were employed, the accuracy of the calculated thermal conductivity was considerably higher than that of diffusivity. The proposed method has two advantages for practical use: it only needs a simple data-conversion process for calculating the diffusivity, and it can skip the tedious calibration process involved in the case of a wire sensor. A validation experiment for the new system has been performed with the basic fluids, and the comparison experiment to compare the change in diffusivity of the base oil and the change in diffusivity of the nano oil has been carried out. It is expected that the present system will provide numerous methods for investigating the variation in the thermal properties other than thermal conductivity.

The estimation of thermal diffusivity using NPE method (비선형 매개변수 추정법을 이용한 열확산계수의 측정)

  • 임동주;배신철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1679-1688
    • /
    • 1990
  • The method of nonlinear parameter estimation(NPE), which is a statistical and an inverse method, is used to estimate the thermal diffusivity of the porous insulation material. In order to apply the NPE method for measuring the thermal diffusivity, and algorithm for programing suitable to IBM personal computer is established, and is studied the statistical treatment of experimental data and theory of estimation. The experimental data obtained by discrete measurement using a constant heat flux technique are used to find the boundary conditions, initial conditions, and the thermal diffusivity, and then the final values are compared with the values obtained by some different methods. The results are presented as follows:(1) NPE method is used to establish the estimation of the thermal diffusivity and compared results with experimental output shows, that this method can be applicable to define the thermal diffusivity without considering hear flux types. (2) Because of all of the temperatures obtained by the discrete measurement on each steps of time are used to estimate the thermal diffusivity. Although some error in the temperature measurements of temperature are included in estimating process, its influences on the final value are minimzed in NPE method. (3) NPE method can reduce the experimental time including the time of data collecting in a few minutes and can take smaller specimen compared with steady state method. If the tube-type furnace is used, also the adjusting time of surrounding temperature can be reduced.