DOI QR코드

DOI QR Code

Enhancement of Surface Diffusivity for Waviness Evolution on Heteroepitaxial Thin Films

  • Kim, Yun Young (Department of Mechanical Engineering, Northwestern University)
  • Received : 2014.11.11
  • Accepted : 2014.12.12
  • Published : 2014.12.31

Abstract

The present study deals with a numerical analysis on the island growth of heteroepitaxial thin-films through local surface diffusivity enhancement. A non-linear governing equation for the surface waviness evolution in lattice-mismatched material systems is developed for the case of spatially-varying surface diffusivity. Results show that a flat film that is stable under constant diffusivity conditions evolves to form nanostructures upon externally-induced spatial diffusivity modulation. The periodicity of waviness can be controlled by changing the modulation parameters, which allows for generation of pattern arrays. The present study therefore points towards a post-deposition treatment technique that achieves controllability and order in the structure formation process for applications in nanoelectronics and thin-film devices.

Keywords

References

  1. I. N. Stranski and L. Krastanov : Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2B, 146(1938) 797.
  2. S. Oda and D. Ferry : Silicon nanoelectronics, CRC Press, Boca Raton (2006).
  3. T. Markvart and L. Castaner : Solar Cells: Materials, Manufacture and Operation, Elsevier, Amsterdam (2005).
  4. G. Wei and S. R. Forrest : Nano Letters 7 (2007) 218. https://doi.org/10.1021/nl062564s
  5. K. A. Sablon, J. W. Little, K. A. Olver, Zh. M. Wang, V. G. Dorogan, Yu. I. Mazur, G. J. Salamo, and F. J. Towner : J. Appl. Phys. 108 (2010) 074305. https://doi.org/10.1063/1.3486014
  6. T. Sugaya, S. Furue, H. Komaki, T. Amano, M. Mori, K. Komori, S. Niki, O. Numakami, and Y. Okano : Appl. Phys. Lett. 97 (2010), 183104. https://doi.org/10.1063/1.3507390
  7. Y. Okada, T. Morioka, K. Yoshida, R. Oshima, Y. Shoji, T. Inoue, and T. Kita : J. Appl. Phys. 109 (2011) 024301. https://doi.org/10.1063/1.3533423
  8. T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki : Solar Energy Mater. Solar Cells 95 (2011) 163. https://doi.org/10.1016/j.solmat.2010.04.040
  9. Q. Deng, X. Wang, C. Yang, H. Xiao, C. Wang, H. Yin, Q. Hou, J. Li, Z. Wang, and X. Hou: Physica B 406 (2011) 73. https://doi.org/10.1016/j.physb.2010.10.020
  10. S. J. Koh : Nanoscale Res. Lett. 2 (2007), 519. https://doi.org/10.1007/s11671-007-9091-3
  11. C. Dais, H. H. Solak, E. Müller, and D. Grutzmacher : Appl. Phys. Lett. 92 (2008) 143102. https://doi.org/10.1063/1.2907196
  12. R. Notzel, N. Sritirawisarn, E. Selcuk, and S. Anantathanasarn: IEEE J. Sel. Top. Quant. Electron. 14 (2008) 1140. https://doi.org/10.1109/JSTQE.2008.918251
  13. H. Gao and W. D. Nix : Annu. Rev. Mater. Sci. 29 (1999) 173. https://doi.org/10.1146/annurev.matsci.29.1.173
  14. L. B. Freund : Int. J. Solids Structures 32(1995), 911 https://doi.org/10.1016/0020-7683(94)00168-V
  15. W. T. Tekalign and B. J. Spencer : J. Appl. Phys. 96 (2004) 5505. https://doi.org/10.1063/1.1766084
  16. B. J. Spencer : Phys. Rev. B 59(1999), 2011 https://doi.org/10.1103/PhysRevB.59.2011
  17. W. T. Tekalign and B. J. Spencer : J. Appl. Phys. 102 (2007) 073503. https://doi.org/10.1063/1.2785024
  18. Y.Y. Kim, Q. Huang, and S. Krishnaswamy: Appl. Phys. Lett. 96 (2010) 123116. https://doi.org/10.1063/1.3374322
  19. C. Zhang and R. Kalyanaraman: Appl. Phys. Lett. 83 (2003) 4827. https://doi.org/10.1063/1.1632036