• Title/Summary/Keyword: Diffusion-weighted imaging (DWI)

Search Result 120, Processing Time 0.029 seconds

Quantitative and Qualitative Evaluation of Brain Diffusion Weighted Magnetic Resonance Imaging: Comparision with 1.5 T and 3.0 T Units (뇌 확산강조 자기공명영상에 대한 정량적, 성적 평가: 1.5 T와 3.0 T 기기 비교)

  • Goo, Eun-Hoe;Dong, Kyung-Rae
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.227-230
    • /
    • 2016
  • DWI of biological effects are independent of magnetic field strength in various regions. High field strength, however, does affect the signal to noise ratio (SNR) and artifacts of diffusion weighted imaging (DWI) images, which ultimately will influence the quantitative of diffusion imaging. In this study, the effects of field strength on DWI are reviewed. The effects of the diseases also are discussed. Comparing DWI in cerebellum, WM, GM, Hyperacute region measurements both as a function of field strength (1.5T and 3.0T). Overall, the SNR of the DWI roughly doubled going from 1.5 T to 3.0 T. In summary, DWI studies at 3.0 T is provided significantly improved DWI measurements relative to studies at 1.5T.

Assessment of Diffusion-Weighted Imaging-FLAIR Mismatch: Comparison between Conventional FLAIR versus Shorter-Repetition-Time FLAIR at 3T

  • Goh, Byeong Ho;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Purpose: Fluid-attenuated inversion recovery (FLAIR) imaging can be obtained faster with shorter repletion time (TR), but it gets noisier. We hypothesized that shorter-TR FLAIR obtained at 3 tesla (3T) with a 32-channel coil may be comparable to conventional FLAIR. The aim of this study was to compare the diagnostic value between conventional FLAIR (TR = 9000 ms, FLAIR9000) and shorter-TR FLAIR (TR = 6000 ms, FLAIR6000) at 3T in terms of diffusion-weighted imaging-FLAIR mismatch. Materials and Methods: We recruited 184 patients with acute ischemic stroke (28 patients < 4.5 hours) who had undergone 5-mm diffusion-weighted imaging (DWI) and two successive 5-mm FLAIR images (no gap; in-plane resolution, $0.9{\times}0.9mm$) at 3T with a 32-channel coil. The acquisition times for FLAIR9000 and FLAIR6000 were 108 seconds (generalized autocalibrating partially parallel acquisitions [GRAPPA] = 2) and 60 seconds (GRAPPA = 3), respectively. Two radiologists independently assessed the paired imaging sets (DWI-FLAIR9000 and DWI-FLAIR6000) for the presence of matched hyperintense lesions on each FLAIR imaging. The signal intensity ratios (area of DWI lesion to contralateral normal-appearing region) on both FLAIR imaging sets were compared. Results: DWI-FLAIR9000 mismatch was present in 39 of 184 (21.2%) patients, which was perfectly the same on FLAIR6000. Three of 145 patients (2%) with DWI-matched lesions on FLAIR9000 had discrepancy on FLAIR6000, showing no significant difference (P > 0.05). Interobserver agreement was excellent for both DWI-FLAIR9000 and DWI-FLAIR6000 (k = 0.904 and 0.883, respectively). Between the two FLAIR imaging sets, there was no significant difference of signal intensity ratio (mean, standard deviation; $1.25{\pm}0.20$; $1.24{\pm}0.20$, respectively) (P > 0.05). Conclusion: For the determination of mismatch or match between DWI and FLAIR imaging, there is no significant difference between FLAIR9000 and FLAIR6000 at 3T with a 32-channel coil.

Serial Magnetic Resonance Images of a Right Middle Cerebral Artery Infarction : Persistent Hyperintensity on Diffusion-Weighted MRI Over 8 Months

  • Son, Seung-Nam;Choi, Dae-Seob;Choi, Nack-Cheon;Lim, Byeong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.4
    • /
    • pp.388-391
    • /
    • 2011
  • A lesion that is hyperintense on diffusion-weighted imaging (DWI) and hypointense on the apparent diffusion coefficient (ADC) map is a characteristic magnetic resonance imaging (MRI) finding in acute ischemic infarction. In some cases, however, these findings can persist for a few months after infarct onset. It is thought that these finding reflect the different evolution speeds of the infarcted tissue. We report a patient with a right middle cerebral artery territory infarction with persistent hyperintensity on DWI and hypointensity on the ADC map for over 8 months. To our knowledge, this is the most persistent case of hyperintensity lesion on DWI and the serial MRI images of this patient provide important information on the evolution of infarcted tissue.

Feasibility of Simultaneous Multislice Acceleration Technique in Diffusion-Weighted Magnetic Resonance Imaging of the Rectum

  • Jae Hyon Park;Nieun Seo;Joon Seok Lim;Jongmoon Hahm;Myeong-Jin Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • Objective: To assess the feasibility of simultaneous multislice-accelerated diffusion-weighted imaging (SMS-DWI) of the rectum in comparison with conventional DWI (C-DWI) in rectal cancer patients. Materials and Methods: This study included 65 patients with initially-diagnosed rectal cancer. All patients underwent C-DWI and SMS-DWI with acceleration factors of 2 and 3 (SMS2-DWI and SMS3-DWI, respectively) using a 3T scanner. Acquisition times of the three DWI sequences were measured. Image quality in the three DWI sequences was reviewed by two independent radiologists using a 4-point Likert scale and subsequently compared using the Friedman test. Apparent diffusion coefficient (ADC) values for rectal cancer and the normal rectal wall were compared among the three sequences using repeated measures analysis of variance. Results: Acquisition times using C-DWI, SMS2-DWI, and SMS3-DWI were 173 seconds, 107 seconds, (38.2% shorter than C-DWI), and 77 seconds (55.5% shorter than C-DWI), respectively. For all image quality parameters other than distortion (margin sharpness, artifact, lesion conspicuity, and overall image quality), C-DWI and SMS2-DWI yielded better results than did SMS3-DWI (Ps < 0.001), with no significant differences observed between C-DWI and SMS2-DWI (Ps ≥ 0.054). ADC values of rectal cancer (p = 0.943) and normal rectal wall (p = 0.360) were not significantly different among C-DWI, SMS2-DWI, and SMS3-DWI. Conclusion: SMS-DWI using an acceleration factor of 2 is feasible for rectal MRI resulting in substantial reductions in acquisition time while maintaining diagnostic image quality and similar ADC values to those of C-DWI.

Recurrence and Metastasis of Lung Cancer Demonstrate Decreased Diffusion on Diffusion-Weighted Magnetic Resonance Imaging

  • Usuda, Katsuo;Sagawa, Motoyasu;Motomo, Nozomu;Ueno, Masakatsu;Tanaka, Makoto;Machida, Yuichiro;Maeda, Sumiko;Matoba, Munetaka;Tonami, Hisao;Ueda, Yoshimichi;Sakuma, Tsutomu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6843-6848
    • /
    • 2014
  • Background: Diffusion-weighted magnetic resonance imaging (DWI) is reported to be useful for detecting malignant lesions. The purpose of this study is to clarify characteristics of imaging, detection rate and sensitivity of DWI for recurrence or metastasis of lung cancer. Methods: A total of 36 lung cancer patients with recurrence or metastasis were enrolled in this study. While 16 patients underwent magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography-computed tomography (PET-CT), 17 underwent MRI and CT, and 3 underwent MRI and PET-CT. Results: Each recurrence or metastasis showed decreased diffusion, which was easily recognized in DWI. The detection rate for recurrence or metastasis was 100% (36/36) in DWI, 89% (17/19) in PET-CT and 82% (27/33) in CT. Detection rate of DWI was significantly higher than that of CT (p=0.0244) but not significantly higher than that of PET-CT (p=0.22). When the optimal cutoff value of the apparent diffusion coefficient value was set as $1.70{\times}10^{-3}mm^2/sec$, the sensitivity of DWI for diagnosing recurrence or metastasis of lung cancer was 95.6%. Conclusions: DWI is useful for detection of recurrence and metastasis of lung cancer.

Feasibility Study of Synthetic Diffusion-Weighted MRI in Patients with Breast Cancer in Comparison with Conventional Diffusion-Weighted MRI

  • Bo Hwa Choi;Hye Jin Baek;Ji Young Ha;Kyeong Hwa Ryu;Jin Il Moon;Sung Eun Park;Kyungsoo Bae;Kyung Nyeo Jeon;Eun Jung Jung
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1036-1044
    • /
    • 2020
  • Objective: To investigate the clinical feasibility of synthetic diffusion-weighted imaging (sDWI) at different b-values in patients with breast cancer by assessing the diagnostic image quality and the quantitative measurements compared with conventional diffusion-weighted imaging (cDWI). Materials and Methods: Fifty patients with breast cancer were assessed using cDWI at b-values of 800 and 1500 s/mm2 (cDWI800 and cDWI1500) and sDWI at b-values of 1000 and 1500 s/mm2 (sDWI1000 and sDWI1500). Qualitative analysis (normal glandular tissue suppression, overall image quality, and lesion conspicuity) was performed using a 4-point Likert-scale for all DWI sets and the cancer detection rate (CDR) was calculated. We also evaluated cancer-to-parenchyma contrast ratios for each DWI set in 45 patients with the lesion identified on any of the DWI sets. Statistical comparisons were performed using Friedman test, one-way analysis of variance, and Cochran's Q test. Results: All parameters of qualitative analysis, cancer-to-parenchyma contrast ratios, and CDR increased with increasing b-values, regardless of the type of imaging (synthetic or conventional) (p < 0.001). Additionally, sDWI1500 provided better lesion conspicuity than cDWI1500 (3.52 ± 0.92 vs. 3.39 ± 0.90, p < 0.05). Although cDWI1500 showed better normal glandular tissue suppression and overall image quality than sDWI1500 (3.66 ± 0.78 and 3.73 ± 0.62 vs. 3.32 ± 0.90 and 3.35 ± 0.81, respectively; p < 0.05), there was no significant difference in their CDR (90.0%). Cancer-to-parenchyma contrast ratios were greater in sDWI1500 than in cDWI1500 (0.63 ± 0.17 vs. 0.55 ± 0.18, p < 0.001). Conclusion: sDWI1500 can be feasible for evaluating breast cancers in clinical practice. It provides higher tumor conspicuity, better cancer-to-parenchyma contrast ratio, and comparable CDR when compared with cDWI1500.

Differentiation between Glioblastoma and Solitary Metastasis: Morphologic Assessment by Conventional Brain MR Imaging and Diffusion-Weighted Imaging

  • Jung, Bo Young;Lee, Eun Ja;Bae, Jong Myon;Choi, Young Jae;Lee, Eun Kyoung;Kim, Dae Bong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.1
    • /
    • pp.23-34
    • /
    • 2021
  • Purpose: Differentiating between glioblastoma and solitary metastasis is very important for the planning of further workup and treatment. We assessed the ability of various morphological parameters using conventional MRI and diffusion-based techniques to distinguish between glioblastomas and solitary metastases in tumoral and peritumoral regions. Materials and Methods: We included 38 patients with solitary brain tumors (21 glioblastomas, 17 solitary metastases). To find out if there were differences in the morphologic parameters of enhancing tumors, we analyzed their shape, margins, and enhancement patterns on postcontrast T1-weighted images. During analyses of peritumoral regions, we assessed the extent of peritumoral non-enhancing lesion on T2- and postcontrast T1-weighted images. We also aimed to detect peritumoral neoplastic cell infiltration by visual assessment of T2-weighted and diffusion-based images, including DWI, ADC maps, and exponential DWI, and evaluated which sequence depicted peritumoral neoplastic cell infiltration most clearly. Results: The shapes, margins, and enhancement patterns of tumors all significantly differentiated glioblastomas from metastases. Glioblastomas had an irregular shape, ill-defined margins, and a heterogeneous enhancement pattern; on the other hand, metastases had an ovoid or round shape, well-defined margins, and homogeneous enhancement. Metastases had significantly more extensive peritumoral T2 high signal intensity than glioblastomas had. In visual assessment of peritumoral neoplastic cell infiltration using T2-weighted and diffusion-based images, all sequences differed significantly between the two groups. Exponential DWI had the highest sensitivity for the diagnosis of both glioblastoma (100%) and metastasis (70.6%). A combination of exponential DWI and ADC maps was optimal for the depiction of peritumoral neoplastic cell infiltration in glioblastoma. Conclusion: In the differentiation of glioblastoma from solitary metastatic lesions, visual morphologic assessment of tumoral and peritumoral regions using conventional MRI and diffusion-based techniques can also offer diagnostic information.

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

An Unusual Case of Japanese Encephalitis Involving Unilateral Deep Gray Matter and Temporal Lobe on Diffusion-Weighted MRI

  • Seok, Hee Young;Lee, Dong Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.250-253
    • /
    • 2016
  • Acute Japanese encephalitis (JE) is an endemic viral infectious disease in various parts of Far East and Southeast Asian countries including Korea. Bilateral thalami are the most common involving sites in JE. Other areas including the basal ganglia, substantia nigra, red nucleus, pons, cerebral cortex and cerebellum may be also involved. We report an extremely unusual brain diffusion-weighted MR imaging (DWI) findings in a 53-year-old man with serologically proven JE involving unilateral deep gray matter and temporal lobe, which shows multifocal high signal intensities in left thalamus, left substantia nigra, left caudate nucleus and left medial temporal cortex on T2-weighted image and DWI with iso-intensity on apparent diffusion coefficient (ADC) map.

Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Cerebral Venous Thrombosis : A Meta-Analysis

  • Lv, Bin;Jing, Feng;Tian, Cheng-lin;Liu, Jian-chao;Wang, Jun;Cao, Xiang-yu;Liu, Xin-feng;Yu, Sheng-yuan
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.3
    • /
    • pp.418-426
    • /
    • 2021
  • Objective : A role of diffusion-weighted imaging (DWI) in the diagnosis of cerebral venous thrombosis (CVT) is not well-understood. This study evaluates the effectiveness of DWI in the diagnosis of CVT. Methods : Literature search was conducted in electronic databases for the identification of studies which reported the outcomes of patients subjected to DWI for CVT diagnosis. Random-effects meta-analyses were performed to achieve overall estimates of important diagnostic efficiency indices including hyperintense signal rate, the sensitivity and specificity of DWI in diagnosing CVT, and the apparent diffusion coefficient (ADC) of DWI signal areas and surrounding tissue. Results : Nineteen studies (443 patients with 856 CVTs; age 40 years [95% confidence interval (CI), 33 to 43]; 28% males [95% CI, 18 to 38]; symptom onset to DWI time 4.6 days [95% CI, 2.3 to 6.9]) were included. Hyperintense signals on DWI were detected in 40% (95% CI, 26 to 55) of the cases. The sensitivity of DWI for detecting CVT was 22% (95% CI, 11 to 34) but specificity was 98% (95% CI, 95 to 100). ADC values were quite heterogenous in DWI signal areas. However, generally the ADC values were lower in DWI signal areas than in surrounding normal areas (mean difference-0.33×10-3 ㎟/s [95% CI, -0.44 to -0.23]; p<0.00001). Conclusion : DWI has a low sensitivity in detecting CVT and thus has a high risk of missing many CVT cases. However, because of its high specificity, it may have supporting and exploratory roles in CVT diagnosis.