DOI QR코드

DOI QR Code

Feasibility Study of Synthetic Diffusion-Weighted MRI in Patients with Breast Cancer in Comparison with Conventional Diffusion-Weighted MRI

  • Bo Hwa Choi (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Hye Jin Baek (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Ji Young Ha (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Kyeong Hwa Ryu (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Jin Il Moon (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Sung Eun Park (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Kyungsoo Bae (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Kyung Nyeo Jeon (Department of Radiology, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital) ;
  • Eun Jung Jung (Department of Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Changwon Hospital)
  • Received : 2019.09.02
  • Accepted : 2020.03.17
  • Published : 2020.09.01

Abstract

Objective: To investigate the clinical feasibility of synthetic diffusion-weighted imaging (sDWI) at different b-values in patients with breast cancer by assessing the diagnostic image quality and the quantitative measurements compared with conventional diffusion-weighted imaging (cDWI). Materials and Methods: Fifty patients with breast cancer were assessed using cDWI at b-values of 800 and 1500 s/mm2 (cDWI800 and cDWI1500) and sDWI at b-values of 1000 and 1500 s/mm2 (sDWI1000 and sDWI1500). Qualitative analysis (normal glandular tissue suppression, overall image quality, and lesion conspicuity) was performed using a 4-point Likert-scale for all DWI sets and the cancer detection rate (CDR) was calculated. We also evaluated cancer-to-parenchyma contrast ratios for each DWI set in 45 patients with the lesion identified on any of the DWI sets. Statistical comparisons were performed using Friedman test, one-way analysis of variance, and Cochran's Q test. Results: All parameters of qualitative analysis, cancer-to-parenchyma contrast ratios, and CDR increased with increasing b-values, regardless of the type of imaging (synthetic or conventional) (p < 0.001). Additionally, sDWI1500 provided better lesion conspicuity than cDWI1500 (3.52 ± 0.92 vs. 3.39 ± 0.90, p < 0.05). Although cDWI1500 showed better normal glandular tissue suppression and overall image quality than sDWI1500 (3.66 ± 0.78 and 3.73 ± 0.62 vs. 3.32 ± 0.90 and 3.35 ± 0.81, respectively; p < 0.05), there was no significant difference in their CDR (90.0%). Cancer-to-parenchyma contrast ratios were greater in sDWI1500 than in cDWI1500 (0.63 ± 0.17 vs. 0.55 ± 0.18, p < 0.001). Conclusion: sDWI1500 can be feasible for evaluating breast cancers in clinical practice. It provides higher tumor conspicuity, better cancer-to-parenchyma contrast ratio, and comparable CDR when compared with cDWI1500.

Keywords

References

  1. Liberman L, Morris EA, Lee MJ, Kaplan JB, LaTrenta LR, Menell JH, et al. Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 2002;179:171-178 https://doi.org/10.2214/ajr.179.1.1790171
  2. Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-A novel approach to breast cancer screening with MRI. J Clin Oncol 2014;32:2304-2310 https://doi.org/10.1200/JCO.2013.52.5386
  3. Chen X, Li WL, Zhang YL, Wu Q, Guo YM, Bai ZL. Metaanalysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 2010;10:693
  4. Zhang L, Tang M, Min Z, Lu J, Lei X, Zhang X. Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis. Acta Radiol 2016;57:651-660 https://doi.org/10.1177/0284185115597265
  5. Trimboli RM, Verardi N, Cartia F, Carbonaro LA, Sardanelli F. Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR, and diffusionweighted imaging: a proof of concept study. AJR Am J Roentgenol 2014;203:674-681 https://doi.org/10.2214/AJR.13.11816
  6. Yabuuchi H, Matsuo Y, Sunami S, Kamitani T, Kawanami S, Setoguchi T, et al. Detection of non-palpable breast cancer in asymptomatic women by using unenhanced diffusionweighted and T2-weighted MR imaging: comparison with mammography and dynamic contrast-enhanced MR imaging. Eur Radiol 2011;21:11-17 https://doi.org/10.1007/s00330-010-1890-8
  7. Woodhams R, Inoue Y, Ramadan S, Hata H, Ozaki M. Diffusionweighted imaging of the breast: comparison of b-values 1000 s/mm2 and 1500 s/mm2. Magn Reson Med Sci 2013;12:229-234 https://doi.org/10.2463/mrms.2012-0028
  8. Blackledge MD, Leach MO, Collins DJ, Koh DM. Computed diffusion-weighted MR imaging may improve tumor detection. Radiology 2011;261:573-581 https://doi.org/10.1148/radiol.11101919
  9. Fukukura Y, Kumagae Y, Hakamada H, Shindo T, Takumi K, Kamimura K, et al. Computed diffusion-weighted MR imaging for visualization of pancreatic adenocarcinoma: comparison with acquired diffusion-weighted imaging. Eur J Radiol 2017;95:39-45 https://doi.org/10.1016/j.ejrad.2017.07.022
  10. Gatidis S, Schmidt H, Martirosian P, Nikolaou K, Schwenzer NF. Apparent diffusion coefficient-dependent voxelwise computed diffusion-weighted imaging: an approach for improving SNR and reducing T2 shine-through effects. J Magn Reson Imaging 2016;43:824-832 https://doi.org/10.1002/jmri.25044
  11. Shimizu H, Isoda H, Fujimoto K, Kawahara S, Furuta A, Shibata T, et al. Comparison of acquired diffusion weighted imaging and computed diffusion weighted imaging for detection of hepatic metastases. Eur J Radiol 2013;82:453-458 https://doi.org/10.1016/j.ejrad.2012.10.020
  12. Kawahara S, Isoda H, Fujimoto K, Shimizu H, Furuta A, Arizono S, et al. Additional benefit of computed diffusionweighted imaging for detection of hepatic metastases at 1.5T. Clin Imaging 2016;40:481-485 https://doi.org/10.1016/j.clinimag.2015.12.007
  13. Rosenkrantz AB, Chandarana H, Hindman N, Deng FM, Babb JS, Taneja SS, et al. Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. Eur Radiol 2013;23:3170-3177 https://doi.org/10.1007/s00330-013-2917-8
  14. Ueno Y, Takahashi S, Kitajima K, Kimura T, Aoki I, Kawakami F, et al. Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis. Eur Radiol 2013;23:3509-3516 https://doi.org/10.1007/s00330-013-2958-z
  15. Maas MC, Futterer JJ, Scheenen TW. Quantitative evaluation of computed high B value diffusion-weighted magnetic resonance imaging of the prostate. Invest Radiol 2013;48:779-786 https://doi.org/10.1097/RLI.0b013e31829705bb
  16. Bittencourt LK, Attenberger UI, Lima D, Strecker R, de Oliveira A, Schoenberg SO, et al. Feasibility study of computed vs measured high b-value (1400 s/mm2) diffusion-weighted MR images of the prostate. World J Radiol 2014;6:374-380 https://doi.org/10.4329/wjr.v6.i6.374
  17. Vural M, Ertas, G, Onay A, Acar O, Esen T, Saglican Y, et al. Conspicuity of peripheral zone prostate cancer on computed diffusion-weighted imaging: comparison of cDWI1500, cDWI2000, and cDWI3000. Biomed Res Int 2014;2014:768291 
  18. Ueno Y, Takahashi S, Ohno Y, Kitajima K, Yui M, Kassai Y, et al. Computed diffusion-weighted MRI for prostate cancer detection: the influence of the combinations of b-values. Br J Radiol 2015;88:20140738
  19. Grant KB, Agarwal HK, Shih JH, Bernardo M, Pang Y, Daar D, et al. Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging 2015;40:578-586 https://doi.org/10.1007/s00261-014-0246-2
  20. Rosenkrantz AB, Parikh N, Kierans AS, Kong MX, Babb JS, Taneja SS, et al. Prostate cancer detection using computed very high b-value diffusion-weighted imaging: how high should we go? Acad Radiol 2016;23:704-711 https://doi.org/10.1016/j.acra.2016.02.003
  21. Verma S, Sarkar S, Young J, Venkataraman R, Yang X, Bhavsar A, et al. Evaluation of the impact of computed high b-value diffusion-weighted imaging on prostate cancer detection. Abdom Radiol (NY) 2016;41:934-945 https://doi.org/10.1007/s00261-015-0619-1
  22. Moribata Y, Kido A, Fujimoto K, Himoto Y, Kurata Y, Shitano F, et al. Feasibility of computed diffusion weighted imaging and optimization of b-value in cervical cancer. Magn Reson Med Sci 2017;16:66-72 https://doi.org/10.2463/mrms.mp.2015-0161
  23. O'Flynn EA, Blackledge M, Collins D, Downey K, Doran S, Patel H, et al. Evaluating the diagnostic sensitivity of computed diffusion-weighted MR imaging in the detection of breast cancer. J Magn Reson Imaging 2016;44:130-137 https://doi.org/10.1002/jmri.25131
  24. Park JH, Yun B, Jang M, Ahn HS, Kim SM, Lee SH, et al. Comparison of the diagnostic performance of synthetic versus acquired high b-value (1500 s/mm2) diffusion-weighted MRI in women with breast cancers. J Magn Reson Imaging 2019;49:857-863 https://doi.org/10.1002/jmri.26259
  25. Zhou J, Chen E, Xu H, Ye Q, Li J, Ye S, et al. Feasibility and diagnostic performance of voxelwise computed diffusionweighted imaging in breast cancer. J Magn Reson Imaging 2019;49:1610-1616 https://doi.org/10.1002/jmri.26533
  26. Dogan BE, Ma J, Hwang K, Liu P, Yang WT. T1-weighted 3D dynamic contrast-enhanced MRI of the breast using a dual-echo Dixon technique at 3 T. J Magn Reson Imaging 2011;34:842-851 https://doi.org/10.1002/jmri.22705
  27. Cornfeld DM, Israel G, McCarthy SM, Weinreb JC. Pelvic imaging using a T1W fat-suppressed three-dimensional dual echo Dixon technique at 3T. J Magn Reson Imaging 2008;28:121-127 https://doi.org/10.1002/jmri.21402
  28. Hori M, Kim T, Onishi H, Ueguchi T, Tatsumi M, Nakamoto A, et al. Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T-Initial experience. Radiology 2011;258:154-163 https://doi.org/10.1148/radiol.10100866
  29. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255-268 https://doi.org/10.2307/2532051
  30. Bickel H, Polanec SH, Wengert G, Pinker K, Bogner W, Helbich TH, et al. Diffusion-weighted MRI of breast cancer: improved lesion visibility and image quality using synthetic b-values. J Magn Reson Imaging 2019;50:1754-1761 https://doi.org/10.1002/jmri.26809
  31. Dorrius MD, Dijkstra H, Oudkerk M, Sijens PE. Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis. Eur Radiol 2014;24:2835-2847 https://doi.org/10.1007/s00330-014-3338-z
  32. Hahn SY, Ko ES, Han BK, Lim Y, Gu S, Ko EY. Analysis of factors influencing the degree of detectability on diffusion-weighted MRI and diffusion background signals in patients with invasive breast cancer. Medicine (Baltimore) 2016;95:e4086
  33. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med 2005;37:360-363
  34. Feinstein AR, Cicchetti DV. High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 1990;43:543-549 https://doi.org/10.1016/0895-4356(90)90158-L