• 제목/요약/키워드: Diffusion Area

검색결과 830건 처리시간 0.028초

기업의 웹 사이트 채택 시기에 영향을 미치는 요인 - 혁신확산이론 관점에서 - (Factors Influencing Adoption of Corporate Web Site Over Time : Innovation Diffusion Theory Perspective)

  • 이동만;장명희;유지영
    • Asia pacific journal of information systems
    • /
    • 제13권4호
    • /
    • pp.257-277
    • /
    • 2003
  • Recently, organizations intend to adopt new information technology for acquiring relative advantages in competitive business environment. Especially, many companies have paid attention to web-based electronic commerce. But research in this area has largely been performed to the operational and technical aspects of web site. Also the World Wide Web(web) has become one of the most widely used information technologies, but research indicates that there are many firm that are still considering whether to establish a web presence. This study examines factors influencing adoption of corporate web site over time. To examine why companies adopt web site, this study regards web site as an innovation and finds out these reason through Innovation Diffusion Theory. Independent variables of this research are composed of innovation characteristics, organizational characteristics and environmental characteristics. By the result of logistic regression analysis, we find that there are significant differences between early adopters and late adopters of web site for three adoption factors : top management support, organization size, environmental uncertainty. These findings confirm the theoretical frame for adoption of corporate web site. Also this study will provide good guidelines to the companies and the vendors in shaping the strategies of IT adoption and IT diffusion respectively.

사행유로를 갖는 고분자연료전지내부에서 가스확산층을 통과하는 반응가스 우회유동에 대한 연구 (A Study on the Bypass Flow Penetrating Through a Gas Diffusion Layer in a PEM Fuel Cell with Serpentine Flow Channels)

  • 조중원;안은진;이승보;윤영기;이원용
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.288-297
    • /
    • 2009
  • A serpentine channel geometry often used in a fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from the intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with high aspect ratio of active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compressive forces. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds that of dropwise condensation in cathode channels.

복잡 지표경계 영역에서 경계 일치 좌표계를 이용한 수치 시뮬레이션에 관한 연구 (Study on Numerical Simulation Using Body-fitted Corrdinate System for Complex Terrain)

  • 홍정혜
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.339-350
    • /
    • 2000
  • The three-dimensional new corrdinate system over a single hill double hills and complex terrain with a single hill and a rectangular obstacle was generated using a body-fitted coordinate system. Control of the coordinate line distribution in the field was executed by generalizing the elliptic generating system to Poisson equation. ▽2ξ=P. The new coordinate system was well fitted to the surface boundary of single hill and double hills. But in the case of complex terrain with hill and rectangular obstacle there was smoothing tendency around the rectangular obstacle. In order to show the validity of the body-fitted coordinate system the heat diffusion equation was transformed and the temperature distribution was calculated over the various terrain. The results showed the temperature distribution was very symmetrical and stable around hills and obstacle. As a result the couple of a body-fitted coordinate system and the heat diffusion equation were executed successfully. Wind field over complex terrain with hill and rectangular obstacle which represent urban area was simulated stably in body-fitted coordinate system. The qualitative result show the enhancement of wind speed at the upwind direction of a hill and a rectangular obstacle and the recirculation zone at the downwind direction.

  • PDF

폐기물 처리시설에서의 악취 및 환기에 관한 연구 (A study on odor and ventilation in waste treatment facilities)

  • 서병석;전용한
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.

석영광물의 용해 및 수산화 이온의 확산에 관한 균질화해석 (Homogenization Analysis of Problems related to Quartz Dissolution and Hydroxide Diffusion)

  • 최정해
    • 지질공학
    • /
    • 제20권3호
    • /
    • pp.271-279
    • /
    • 2010
  • 광물의 용해현상과 밀접하게 관련된 암석의 시간의존성 변형과 파괴현상은 실내시험에서 비교적 용이하게 관찰된다. 본 연구에서는 고준위 방사성폐기물의 지하 처분장 건설시 완충제로 사용되어지는 벤토나이트에 많이 포함된 석영의 고 알칼리 환경 하에서의 용해 현상을 정량적으로 관찰하기 위해서 수산화 이온의 확산과 석영의 용해 문제를 균질화 해석법을 이용하여 평가하였다. 해석결과에 의하면 석영의 용해량은 주변 환경의 온도 및 층간수의 두께와 비례한다. 특히 고알칼리 환경 하에서는 층간수의 두께가 작아지면서 반응표면적이 커지게 되고 그 결과 용해 속도는 층간수의 두께가 작아질수록 커지는 결과를 나타내고 있다.

미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착 (Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity)

  • 최재혁;후지타오사무;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

차세대 반도체용 유-무기 나노 복합재료의 에폭시 수지변화에 따른 흡습특성 (Moisture Absorption Properties of Organic-Inorganic Nano Composites According to the Change of Epoxy Resins for Next Generation Semiconductor Packaging Materials)

  • 김환건;김동민
    • 반도체디스플레이기술학회지
    • /
    • 제12권1호
    • /
    • pp.23-28
    • /
    • 2013
  • Epoxy resins are widely used in microelectronics packaging such as printed circuit board and encapsulating for semiconductor manufacturing. Water can diffuse into and through the epoxy matrix systems and moisture absorption at boarding interfaces of matrix resin systems can lead to a hydrolysis at the interfaces resulting in delamination of encapsulating materials. In the study, the changes of diffusion coefficient and moisture content ratio of epoxy resin systems with nano-sized fillers according to the change of liquid type epoxy resins were investigated. RE-304S, RE-310S, RE-810NM and HP-4032D as a epoxy resin, Kayahard AA as a hardener, and 1B2MI as a catalyst were used in these epoxy resin systems. After curing, moisture content ratios were measured with time under the 85 and 85% relative humidity condition using a thermo-hydrostat. The maximum moisture absorption ratio and diffusion coefficient of EMC decrease with the filler content. It can be seen that these decreases are due to the increase of filler surface area and the decrease of moisture through channel with the content of nano-sized filler.

The High Temperature Oxidation Behavior of Diffusion Aluminized MarM247 Superalloy

  • Matsunaga, Yasuo;Matsuoka, Akira;Nakagawa, Kiyokazu
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.53-57
    • /
    • 2003
  • The MarM247 based superalloy (8wt.%Cr- 9wt.%Co- 3wt.%Ta- 1.5wt.%Hf- 5.6%wt.Al- 9.5wt.%W- Bal. Ni) specimens were diffusion aluminized by for types of pack cementation methods, and their coating structure and their high temperature oxidation resistance were investigated. The coated specimens treated at 973K in high aluminum concentration pack had a coating layer containing large hafunium rich precipitates, which were originally included in substrate alloy. After the high temperature oxidation test in air containing 30 vol.% $H_2O$ at 1273K ~ 323K, the deep localized corrosion which reached to the substrate were observed along with these hafnium rich precipitates. On the other hand, the coated specimens treated at 1323K using low aluminum concentration pack showed the coating layer without the large hafunium rich precipitates, and after the high temperature oxidation test at 1273K for 1800 ksec, it did not show the deep localized corrosion. The nickel electroplating before the aluminizing forms thick hafnium free area, and its high temperature oxidation resistance were comparable to platinum modified aluminizing coatings at 1273K.

가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향 (The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell)

  • 조중원;안은진;이승보;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

불투명 외피의 열관류에서 단열재의 습도영향 (Effects of the Moisture on the Overall Heat Transfer Through Heat Insulators Opaque Envelopes)

  • 이성
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.63-69
    • /
    • 1998
  • 일반적으로 건물 단열재는 건조된 것이 사용되며 이 상태에서 열전도율을 측정하여 열 손실을 산정할 때 기초자료로 이용될 수 있다. 그러나 이러한 단열재가 흡습성 재료인 경우에는 습도평형 혹은 다른 작용에 의해 습도가 높아지기에 이에 따라 열전도율도 상승하게된다. 이처럼 재료 열전도율의 상승효과는 건축물에 흡습성 재료가 사용될 경우 그 사이에 비흡습성 단열재료가 시공됐을 때도 양쪽재료의 흡습성으로 인하여 단열재의 열전도율이 상승하게 되며 이에 따른 열손실 또한 높아진다. 본 논문에서는 이러한 열전도율의 상승을 간단하게 계획단계에서 적용할 수 있도록 실측에 의해 검증된 약산식을 통해 산출될 수 있도록 하였다.

  • PDF