• Title/Summary/Keyword: Diffusers

Search Result 159, Processing Time 0.025 seconds

Performance of Absorption Diffuser Silencers (흡음형 디퓨저 소음기의 성능)

  • 정갑철;현승일;이종우;권영필
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.377-384
    • /
    • 1994
  • This paper is an investigation of the performance of absorption diffusers to suppress the vent noise emitted when high pressure gas is throttled. First, experiment for the static performance is carried out. When there is no through-flow, the insertion loss has been obtained in terms of 1/3 octave band spectrum and the effect of the number of diffusers and the thickness of the absorption material on the static performance has been obtained. And the similarity in the spectrum of the static insertion loss is confirmed by comparing two similar models with different size. Second, the dynamic performance has been obtained by experiment using blow-down of compressed air from a storage tank through an orifice of diameter 10 mm. The back pressure by the diffuser is measured and compared with that of a single diffuser. It is found that the insertion loss of asingle diffuser is very low around 3 dB at high frequencies with negative value at low frequencies. By absorption material between the diffuser tubes, however, the performance is increased considerably. Without flow the static insertion loss increases by 3 - 4 dB by doubling the thickness or the density of the absorptionmaterial. With flow, however, the dynamic insertion loss increases. While, the back pressure by the diffuser is small enough to be neglected.

  • PDF

A Study on the Optimum Design of Air-Conditioning Duct with Multiple Diffusers (다수의 취출구를 갖는 A/C덕트의 최적설계에 관한 연구)

  • 김민호;이대훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.98-106
    • /
    • 2002
  • The airflow characteristics of an air-conditioning duct with multiple diffusers were investigated through one-dimensional analysis, CFD simulation and experimental measurement. One-dimensional program based on Bernoulli's equation and minor loss equations was developed in order to evaluate the air distribution rate at each diffuser. In CFD simulation, three-dimensional flow characteristics inside air-conditioning duct were computed for incompressible viscous flow, adopting the RNG k-$\xi$turbulence model. Also, in an effort to equalize the discharge flow rate at each outlet, the optimization procedure has been performed to obtain the optimum diffuser area. In this process, square of difference between maximum discharge rate and minimum discharge rate is used as an object function. Diffuser area and discharge velocity are established as constraints. After optimization process, determined design variables are applied again in CFD simulation and experiment to validate the optimized result by one-dimensional program. Comparison with the experimental data of airflow rate distribution showed that the developed program seems to be acceptable and can be useful design tool for an automotive air-conditioning duct in an initial design stage.

ADPI Characteristics of a Line-Diffuser (라인-디퓨저의 ADPI특성에 관한 연구)

  • Lee, Jae-Heon;Cho, Young-Jin;Kang, Seok-Youn;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.958-964
    • /
    • 2001
  • It is difficult to apply a conventional selection guide for diffusers when the diffuser is installed in a perimeter zone, because the ADPI(Air Diffusion Performance Index) vs. T/L(Throw/Length) curve listed in conventional guide does not consider the perimetric heating load. The objective of this study is to evaluate the effect of the perimetric heating load on the ADPI and to propose a selection guide for proper diffuser when perimetric heating load exists. The velocity and temperature distributions and the ADPI value are obtained numerically with various heat load ratios and air flow rates. The ADPI values by numerical result were compared with existing experimental data to verify the method for evaluation of ADPI proposed in present study. In case of a high side wall diffuser, the ADPI decreased with increases of the flow rate on every heat load ratio of present study except 0.75. Also, the ADPI vs. T/L curves have been proposed for the heat load ratios of 0.25, 0.5, 0.75 to guarantee comport thermal environment when diffusers are installed in perimeter zone.

  • PDF

A Pilot Study on Air Flotation Processes for Retrofitting of Conventional Wastewater Treatment Facilities (하수처리시설의 Retrofitting을 위한 파일럿 규모 공기부상공정 연구)

  • Park, Chanhyuk;Hong, Seok-Won;Lee, Sanghyup;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.329-336
    • /
    • 2008
  • The pilot study was conducted to evaluate the applicability of air flotation(AF) processes combined with biological nutrient removal(BNR) for the retrofitting of conventional wastewater treatment facilities. The BNR system was operated in pre-denitrification and intermittent aeration; developed ceramic membrane diffusers were installed to separate the solid-liquid of activated sludge at the bottom of a flotation tank. Before performing a pilot scale study, the size distribution of microbubbles generated by silica or alumina-based ceramic membrane diffusers was tested to identify the ability of solid-liquid separation. According to the experimental results, the separation and thickening efficiency of the alumina-based ceramic membrane diffuser was higher than the silica-based ceramic membrane diffuser. In a $100m^3/d$ pilot plant, thickened and return sludge concentration was measured to be higher than 15,000mg SS/L, therefore, the MLSS in the bioreactor was maintained at over 3,000mg SS/L. The effluent quality of the AF-BNR process was 4.2mg/L, 3.7mg/L, 10.6mg/L and 1.6mg/L for $BOD_5$, SS, T-N and T-P, respectively. Lastly, it was revealed that the unit treatment cost by flotation process is lower than about $1won/m^3$ compared to a gravity sedimentation process.

A Study on Mixing Characteristics of Ocean Outfall System with Rosette Diffuser (장미형확산관 형태의 해양방류시스템의 혼합특성 연구)

  • Kim, Young Do;Seo, Il Won;Kwon, Seok Jae;Lyu, Siwan;Kwon, Jae Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.389-396
    • /
    • 2008
  • The hybrid model can be used to predict the initial near field mixing and the far field transport of the buoyant jets, which are discharged from the submerged wastewater ocean outfall. In the near field, the jet integral model can be used for single port diffusers while the ${\sigma}$ transformed particle tracking model was used in the far field. In this study, the experimental study was performed to verify the developed hybrid model in the previous research. The developed hybrid model properly predict the surface and vertical concentration distribution of the single buoyant jets with various effluent and ambient conditions. The hybrid model can also simulate the surface concentration distribution of the rosette diffuser except for the parallel diffuser with the higher densimetric Froude number due to the assumption that dynamic effects of the effluent plumes are negligible in the far field. The application of the hybrid model to rosette diffusers can predict the concentration near the diffuser more accurately when the line-plume approximation is used.

Analysis on the Age of Air and the Air Change Effectiveness of the Personal Environmental Module System in Intelligent Buildings

  • Cho, Dongwoo
    • Architectural research
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • An interesting of desktop air-conditioning system is the Personal Environmental Module(PEM) System. The PEM system allows the occupant to choose the desired temperature, air volume and direction of the discharged air. In this study, the measurements on the age of air and the air change effectiveness, using the tracer gas method, are carried out to analyze the ventilation performance for provision of fresh air near the breathing zone by the PEM. The relations between the PEM for optimal control and other factors related to indoor air quality, and the ventilation for the PEM are examined. Also, three different supply diffuser types(desktop, floor and ceiling) are compared in view of their ability to distribute supply air to the workstation breathing zone. The desktop diffuser type could deliver air directly to the occupants breathing zone with a high degree of effectiveness. The minimum local age of air was measured in the breathing zone, which is directly supplied with air from the PEM diffusers, and the measured local air change effectiveness of the desktop diffuser in the breathing zone was about 1.13 to 1.23 times greater than that of the ceiling and floor diffusers. When the minimum outside air change rate as specified using ASHRAE Standard 62R is supplied with a desktop diffuser type, the volume of outside air can be reduced 13 to 23%, resulting in a commensurate in ventilation energy use.

  • PDF

The Preliminary Design and Fabrication of a Daylighting Device with Mini-dish Cluster (자연채광용 Mini-dish 클러스터의 기본설계 및 시제품 제작에 관한 연구)

  • Han, Hyunjoo;Kim, Jeong-Tai
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • This work has carried out some preliminary studies for the utilization of a solar mini-dish system capable of concentrating solar rays to higher densities. A typical mini-dish system considered employs an array of solar mini-dishes where major components are light and compact. It consists of small mini-dishes, optical fiber bundles and diffusers at the end. Each mini-dish (typically has a 20 to 30 cm in diameter) is designed with a simple parabolic profile, concentrating sunlight (after the glass glazing cover to avoid dust deposition on the reflector and facilitate cleaning) onto a centrally-located small mirror which is placed on the bottom side of the transparent glass cover. The focused sunlight is reflected by the mirror surface onto a focal point where the receiving aperture of a homogenizer is located. Optical fibers are used to carry high-density solar rays to the other end where diffusers are mounted for indoor illumination. The proposed high density mini-dish system could make an efficient daylighting system as it excludes large moving parts and expandable if necessary. Each component of the system could be made from the off-the-shelf technology and thus, make the generic unit inexpensive to manufacture. Depending on spatial demand or characteristics, the amount of introducing daylight could be controlled. Preliminary tests have been carried out for a trial system to check any functional problems when in operation. Suggestions are also made to improve the design enhancing its performance and applicability.

The Evaluation of Performance and Flow Characteristics on the Diffuser Geometries Variations of the Centrifugal Compressor in a Marine Engine Turbocharger (박용 터보차져의 원심압축기의 디퓨져 형상변경에 따른 성능비교 및 유동특성 평가 연구)

  • Kim, Hong-Won;Ha, Ji-Soo;Kim, Bong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30-50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on NACA airfoil and second is channel diffuser and third is conformal transformation of NACA65(4A10)06 airfoil. Mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. NACA65(4A10)06 airfoil showed the widest operating range and higher pressure characteristics than the others.

Preparation and Characteristics of PC and PMMA-Based Diffusers for LED Backlight Unit (PC 및 PMMA 수지를 이용한 LED 백라이트용 확산판의 제조 및 특성 연구)

  • Kim, Nam Yi;Kim, Hyo Jin;Kim, Dong Won;Jo, Jae Hyun;Kim, Seong Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • The optical diffuser for direct-lit LED backlight unit was prepared by using extrusion compounding followed by thermoforming process. Poly(methyl methacrylate) (PMMA) with superior optical characteristics and polycarbonate (PC) with good thermal property were used as base resins, and crosslinked polystyrene (PS) and PMMA beads as diffusing agents were incorporated into resin matrix to derive light scattering and diffusing action. In the compounded plate, the diffusing beads were observed to be dispersed uniformly and distinctly in the continuous phase. The inclusion of polymeric beads up to 3 wt% substantially enhanced the optical characteristics such as luminance, luminance uniformity, haze for the diffuser. Two different diffusers of PC and PMMA-based compound with various compositions were compared in terms of measured optical, thermal, and mechanical properties, which would be expected to be utilized for the industrial application of LED backlight unit.

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.