• Title/Summary/Keyword: Diffuse Radiation

Search Result 159, Processing Time 0.023 seconds

A simulation model for the analysis of direct and diffuse solar radiation in glasshouse - Effect of orientation on the transmissivity of direct solar radiation in glasshouse - (유리온실내의 직달일사 및 산란일사 해석을 위한 시뮬레이션 모형 개발 - 동방위가 온실내의 직달일사 투과도에 미치는 영향 -)

  • 김용현;이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.11a
    • /
    • pp.1-7
    • /
    • 1997
  • 온실이란 식물 생육에 요구되는 태양광을 유용하게 활용하기 위하여 투명한 피복재가 사용된 구조물을 일컫는다. 온실내로 투과되는 일사량은 온실이 설치된 지역의 위도, 온실의 동방위 및 형상, 구조물의 재원, 피복재의 광학적 특성, 년중일수, 기상 조건, 지붕면의 경사각 등에 따라 변화된다. 일반적으로 겨울철에 온실내의 일사량은 식물의 정상적인 생육에 제약이 되는 요소로 작용한다. (중략)

  • PDF

MR Imaging of Radiation-Induced Lumbosacral Plexopathy, as a Rare Complication of Concomitant Chemo-Radiation for Cervical Cancer

  • Hwang, Eun Taeg;Son, Hye Min;Kim, Jin Young;Moon, Sung Min;Lee, Ho Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Radiation-induced lumbosacral plexopathy (RILSP) is an uncommon complication of pelvic radiotherapy that can result in different degrees of sensory and motor deficits. An age 59 female with cervical cancer, who had received combined chemotherapy and radiation therapy two years before, presented with bilaterally symmetric lower-extremity weakness and tingling sensation. The magnetic resonance imaging showed diffuse T2 bright signal intensity and mild enhancement along the bilateral lumbosacral plexus with no space-occupying masses. RILSP was diagnosed after the exclusion of malignant and inflammatory plexopathies.

A Study on the Analysis of Solar Radiation Characteristics on a High Elevated Area (고지대 일사량 특성분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack;Auh, Chung-Moo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.23-28
    • /
    • 2003
  • The purpose of this study is to procure basic data to be used for solar power plant and concentrating collector designs. Site elevation is one of the major factors which influences the incoming insolation to the earth surface. Because the nonpermanent gases such as ozone, water vapor are unmixed components of the atmosphere and their concentrations are the function of height, the site elevation effects the relative proportion of the atmospheric constituents. We have measured solar radiation on Jiri Mt. (1,400m) and in Gurye area(115m) at the near same latitude. These values were then compared to obtain their characteristics and to investigate the potential for the solar utilization for both high and low elevated areas. From the experimental results, we concluded that 1) Daily mean horizontal global radiation and normal beam radiation on Mt. Jiri are 9.5%, and 35.3% higher than Gurye area respectively for a clear day. 2) A significant difference in atmospheric clearness index is observed between Mt. Jiri and Gurye areas.

New mathematical approach to determine solar radiation for the southwestern coastline of Pakistan

  • Atteeq Razzak;Zaheer Uddin;M. Jawed Iqbal
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Solar Energy is the energy of solar radiation carried by them in the form of heat and light. It can be converted into electricity. Solar potential depends on the site's atmosphere; the solar energy distribution depends on many factors, e.g., turbidity, cloud types, pollution levels, solar altitude, etc. We estimated solar radiation with the help of the Ashrae clear-sky model for three locations in Pakistan, namely Pasni, Gwadar, and Jiwani. As these locations are close to each other as compared to the distance between the sun and earth, therefore a slight change of latitude and longitude does not make any difference in the calculation of direct beam solar radiation (BSR), diffuse solar radiation (DSR), and global solar radiation (GSR). A modified formula for declination angle is also developed and presented. We also created two different models for Ashrae constants. The values of these constants are compared with the standard Ashrae Model. A good agreement is observed when we used these constants to calculate BSR, DSR, GSR, the Root mean square error (RMSE), Mean Absolute error (MABE), Mean Absolute percent error (MAPE), and chisquare (χ2) values are in acceptance range, indicating the validity of the models.

Conductive-Radiative Heat Transfer in an Infinite Square Duct with Dielectric Directional Property Wall (부도체 방향복사면이 있는 무한 정사각관의 전도-복사열전달)

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.543-552
    • /
    • 2003
  • The effects of a directionally emitting and reflecting dielectric surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The emissivity and reflectivity of opaque and gray wall vary with direction. Combined effect of conductive and radiative heat transfer is analyzed using finite difference and the direct discrete-ordinates method. The parameters under study are conduction to radiation parameter, optical depth, refractive index ratio. The results with directional and diffuse properties deviate each other when the conduction to radiation parameter is less than around 0.01. The wall heat flux differs fur optical thickness less than around 0.1. However, the medium temperature profiles differ for optical thickness greater than around 1. Deviations from diffuse property calculations are larger for hot wall with directional property than cold wall with directional property. As n increases from 1.5, the trend changes are observed fur refractive index ratio about n=6.10

Analysis and Calculation of Hourly Surface Temperature Based on Typical Meterorological Data for Major Cities in Korea (국내 주요도시의 표준기상자료를 이용한 시간당 표면온도 산출 및 분석)

  • Lee, Kwan-Ho;Cho, Hyun-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.123-128
    • /
    • 2012
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design. The purpose of our work is to predict the surface temperature on inclined surfaces based on ISO-TRY typical weather data. To reach this goal, three studies were performed. They consisted of quantifying the accuracy of various well-known three models. The first type of models calculated diffuse horizontal irradiations from global ones and the second type models computed global irradiations on inclined planes from diffuse and global components on a horizontal surface. The third type of model calculated long-wave radiation and surface temperature from ISO-TRY typical weather data. The proposed model can provide an alternative to building designers in estimating the surface temperature and solar irradiation on inclined surfaces where only the typical meteorological data are available.

Probing Cosmic Near Infrared Background using AKARI Data

  • Seo, Hyun Jong;Matsumoto, Toshio;Jeong, Woong-Seob;Lee, Hyung Mok;Matsuura, Shuji;Matsuhara, Hideo;Oyabu, Shinki;Pyo, Jeonghyun;Wada, Takehiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}m$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF

Probing Cosmic Near Infrared Background using AKARI Data

  • Seo, Hyun Jong;Matsumoto, Toshio;Jeong, Woong-Seob;Lee, Hyung Mok;Matsuura, Shuji;Matsuhara, Hideo;Oyabu, Shinki;Pyo, Jeonghyun;Wada, Takehiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2013
  • The first generation stars in the universe are not observed as discrete objects by using current observational facilities, but their contributions are redshifted to the near infrared wavelength bands at present universe. Therefore, investigation of background radiation at near infrared is important for the study of the first stars. In this study, we present new observations of spatial fluctuations in sky brightness toward the north ecliptic pole using data from AKARI. Among pointed observation program of AKARI, we used two pointing surveys named Monitor field and NEP wide field at three wavelength bands 2.4, 3.2, and 4.1 ${\mu}$. To obtain spatial fluctuations from observed images, first of all, we exclude pixels affected by resolved foreground objects and then obtain diffuse map which consists of diffused radiation only. Because the diffuse map contains not only cosmological components but also various foreground components, in order to detect cosmological components, we estimate the contributions of foreground components separately. The results of this study show that there remains excess spatial fluctuation that cannot be explained by known foreground sources. This work is based on observations with AKARI, a JAXA project with the participation of ESA.

  • PDF

EFFECTS OF THE DIFFUSE IONIZING RADIATION ON THE STRUCTURE OF HII REGIONS

  • Hong, S.S.;Sung, H.I.
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.2
    • /
    • pp.127-140
    • /
    • 1989
  • Problem of the diffuse radiation (DFR) transfer is solved exactly for pure hydrogen nebulae of uniform density, and accuracies of the on-the-spot (OTS) approximation are critically examined. For different values of density and spectral types of the central star, we have calculated the degree of ionization and the kinetic temperature of electrons as functions of distance from the central star, and compared them with the corresponding results of the OTS approximation. At most locations inside an HII region. the DFR ionizes considerable amount of hydrogen; therefore, the OTS approximation under-estimates the size of ionized regions. The exact treatment of the DFR transfer results in an about 10 to 20 percent increase in the classical $Str{\ddot{o}}mgren$ radius. The OTS approximation overestimates the local heating rate by raising the density of neutral hydogens. Consequently, it predicts higher values for the local electron temperature. The OTS approximation also exaggerates the dependence of electron temperature on density. When the hydrogen density is changed from $10/cm^3$ to $10^3/cm^3$ with an 06.5V star, the OTS approximation shows an about 3,000 K difference in the electron temperature, while the exact treatment of the DFR-transfer reduces the difference to about 1,000 K. The OTS approximation fails to demonstrate the brightening of the electron temperature close to the ionization boundary.

  • PDF

LIFECYCLE OF THE INTERSTELLAR DUST GRAINS IN OUR GALAXY VIEWED WITH AKARI/MIR ALL-SKY SURVEY

  • Ishihara, D.;Kaneda, H.;Mouri, A.;Kondo, T.;Suzuki, S.;Oyabu, S.;Onaka, T.;Ita, Y.;Matsuura, M.;Matsunaga, N.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.117-122
    • /
    • 2012
  • The interstellar dust grains are formed and supplied to interstellar space from asymptotic giant branch (AGB) stars or supernova remnants, and become constituents of the star- and planet-formation processes that lead to the next generation of stars. Both a qualitative, and a compositional study of this cycle are essential to understanding the origin of the pre-solar grains, the missing sources of the interstellar material, and the chemical evolution of our Galaxy. The AKARI/MIR all-sky survey was performed with two mid-infrared photometric bands centered at 9 and $18{\mu}m$. These data have advantages in detecting carbonaceous and silicate circumstellar dust of AGB stars, and the interstellar polycyclic aromatic hydrocarbons separately from large grains of amorphous silicate. By using the AKARI/MIR All-Sky point source catalogue, we surveyed C-rich and O-rich AGB stars in our Galaxy, which are the dominant suppliers of carbonaceous and silicate grains, respectively. The C-rich stars are uniformly distributed across the Galactic disk, whereas O-rich stars are concentrated toward the Galactic center, following the metallicity gradient of the interstellar medium, and are presumably affected by the environment of their birth place. We will compare the distributions of the dust suppliers with the distributions of the interstellar grains themselves by using the AKARI/MIR All-Sky diffuse maps. To enable discussions on the faint diffuse interstellar radiation, we are developing an accurate AKARI/MIR All-Sky diffuse map by correcting artifacts such as the ionising radiation effects, scattered light from the moon, and stray light from bright sources.