• Title/Summary/Keyword: Diffraction order

Search Result 965, Processing Time 0.029 seconds

Electromagnetic scattering characteristics of a hyperbolic reflector antenna accounting for the UTD higher order diffraction (UTD 고차회절을 고려한 쌍곡면 반사판 아테나의 전자파 산란 특성)

  • 최재훈;이병우;이상설
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.85-93
    • /
    • 1996
  • The far-zone scattered field patterns of a hyperbolic reflector antenna are analyzed by using uniform geometrical theory of diffraction(UTD). The main objective of this paper is to obtain the higher order diffraction contributions which provide the continuity over the shadow boundaries of the first order solution. to obtain the scattered magnetic field characteristics, the scattered field components of the secodn-order diffraction, diffraction-reflection, diffraction-reflection-diffraction terms are added to the result of the previous research. The results of the present research are compared to those of the first order solution and the method of moments. One can observe the improvemtn of the current approach over the first order solution. also, the results of the present method agree very well with those of the moment methods especially in the transition regions near the first order diffraction shadow boundaries.

  • PDF

A study on the Variable Elimination of the 0-th order Diffraction Using the Fourier Transform in the Digital Holography Microscope System

  • Choi, Kyu-Hwan;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1357-1360
    • /
    • 2009
  • In this study, the 0-th order diffraction could be efficiently removed with the obtained data for one hologram using the numerical reconstruction method. This method has a reduced data acquisition and processing time compared with the existing method wherein the data for two or more phase holograms are obtained for regeneration, and efficiently eliminates the 0-th order diffraction.

  • PDF

COMPUTATION OF THE DYNAMIC FORCE COMPONENT ON A VERTICAL CYLINDER DUE TO SECOND ORDER WAVE DIFFRACTION

  • Bhatta, Dambaru
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.45-60
    • /
    • 2008
  • Here we consider the evaluation of the the dynamic component of the second order force due to wave diffraction by a circular cylinder analytically and numerically. The cylinder is fixed, vertical, surface piercing in water of finite uniform depth. The formulation of the wave-structure interaction is based on the assumption of a homogeneous, ideal, incompressible, and inviscid fluid. The nonlinearity in the wave-structure interaction problem arises from the free surface boundary conditions, namely, dynamic and kinematic free surface boundary conditions. We expand the velocity potential and free surface elevation functions in terms of a small parameter and then consider the second order diffraction problem. After deriving the pressure using Bernoulli's equation, we obtain the analytical expression for the dynamic component of the second order force on the cylinder by integrating the pressure over the wetted surface. The computation of the dynamic force component requires only the first order velocity potential. Numerical results for the dynamic force component are presented.

  • PDF

NONLINEAR FREE SURFACE CONDITION DUE TO SECOND ORDER DIFFRACTION BY A PAIR OF CYLINDERS

  • BHATTA DAMBARU D.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.171-182
    • /
    • 2005
  • An analysis of the non-homogeneous term involved in the free surface condition for second order wave diffraction on a pair of cylinders is presented. In the computations of the nonlinear loads on offshore structures, the most challenging task is the computation of the free surface integral. The main contribution to this integrand is due to the non-homogeneous term present in the free surface condition for second order scattered potential. In this paper, the free surface condition for the second order scattered potential is derived. Under the assumption of large spacing between the two cylinders, waves scattered by one cylinder may be replaced in the vicinity of the other cylinder by equivalent plane waves together with non-planner correction terms. Then solving a complex matrix equation, the first order scattered potential is derived and since the free surface term for second order scattered potential can be expressed in terms of the first order potentials, the free surface term can be obtained using the knowledge of first order potentials only.

Computer simulation of the removal of the 0-th order diffraction by using fourier transform in digital holography (디지털 홀로그래피에서 퓨리어 변환을 이용한 0차 회절광의 제거와 위상홀로그램의 생성에 대한 전산 모사)

  • Kim, Sung-Kyu;Park, Min-Chul;Lee, Seok;Kim, Jae-Soon;Son, Jung-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • A computer simulation about removal of the 0-th order diffraction is achieved by using numerical reconstruction in digital holography and the Fourier transform method. A light intensity distribution hologram is generated through numerical calculation of the interference pattern. Additionally a phase hologram without the 0-th order diffraction is generated. The removal function for elimination of the 0-the order diffraction is introduced and the numerical reconstructions with several conditions for the removal of the 0-th order diffraction and the production of high quality numerically reconstructed images are tested and compared. The removal function is proven to be more effective at the suppression of the 0-th order diffraction compared with the DC suppression method.

A Time-Domain Approach for the Second-Order Diffraction Problem Around Circular Cylinders in Random Waves

  • YONGHWAN KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • This study concentrates on the second-order diffraction problem around circular cylinders in multi-frequency waves. The method of solution is a time-domain Rankine panel method which adopts a higher-order approximation for the velocity potential and wave elevation. In the present study, the multiple second-order quadratic transfer functions are extracted from the second-order time signal generated in random waves, and the comparison with other bench-mark test results shows a good agreement. This approach is directly applicable to prediction of nonlinear forces on offshore structures in random ocean.

  • PDF

An implementation of the efficient optical perfect shuffle interconnection with block-quantized binary phase hologram (Block-Quantized 이진 위상 홀로그램을 이용한 효율적인 광학적 perfect shuffle의 구현)

  • Kim, Hee-Ju;Huh, Hyun;Pan, Jae-Kyung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.125-131
    • /
    • 1996
  • In this paper, we introduced the BQBPH method for making the grating of high efficiency which was improtant in implementing optical PS. The pattern of graing was obtianed by computer simulations using iterative method, and the diffraction efficeincy of designed grating was about 67% through BPM simulation. The grating was fabricated by laser beam writer, and the diffraction efficiency BPM simulation. The grating was fabricated by laser beam writer, and the diffraction efficiency was 47%. We implemented the optical PS with the grating and showed that optical experimental output patterns were good agreement with PS output patterns and first order was main diffraction order.

  • PDF

Global performances of a semi-submersible 5MW wind-turbine including second-order wave-diffraction effects

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.139-160
    • /
    • 2015
  • The global performance of the 5MW OC4 semisubmersible floating wind turbine in random waves was numerically simulated by using the turbine-floater-mooring fully coupled and time-domain dynamic analysis program FAST-CHARM3D. There have been many papers regarding floating offshore wind turbines but the effects of second-order wave-body interactions on their global performance have rarely been studied. The second-order wave forces are actually small compared to the first-order wave forces, but its effect cannot be ignored when the natural frequencies of a floating system are outside the wave-frequency range. In the case of semi-submersible platform, second-order difference-frequency wave-diffraction forces and moments become important since surge/sway and pitch/roll natural frequencies are lower than those of typical incident waves. The computational effort related to the full second-order diffraction calculation is typically very heavy, so in many cases, the simplified approach called Newman's approximation or first-order-wave-force-only are used. However, it needs to be justified against more complete solutions with full QTF (quadratic transfer function), which is a main subject of the present study. The numerically simulated results for the 5MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model test results by Technip/NREL/UMaine. The predicted motions and mooring tensions for two white-noise input-wave spectra agree well against the measure values. In this paper, the numerical static-offset and free-decay tests are also conducted to verify the system stiffness, damping, and natural frequencies against the experimental results. They also agree well to verify that the dynamic system modeling is correct to the details. The performance of the simplified approaches instead of using the full QTF are also tested.

The Inverse Modeling of Diffraction Phenomena under Plane Wave Incidence using Neural Network (평면파 입사시 신경회로망을 이용한 회절현상의 역모델링)

  • Na, Hui-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1175-1182
    • /
    • 2000
  • Diffraction systematically causes error in acoustic measurements. Most probes are designed to reduce this phenomenon. On the contrary, this paper proposes a spherical probe a] lowing acoustic inten sity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has nonlinear properties. In this paper, we propose the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with better performances. A number of computer simulations are carried out in order to demonstrate the diffraction phenomena under various angles. Simulations for the inverse modeling of diffraction phenomena have been successfully conducted in showing the superiority of the neural network.

Spatial Frequency Filtering Characteristics of Annular Phase Gratings (고리형 위상 격자의 공간 주파수 필터 효과)

  • 김인길;고춘수;임성우;오용호;이재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.994-1000
    • /
    • 2004
  • We studied the characteristics of annular phase gratings as spatial frequency filters. We first calculated the Fraunhofer diffraction patterns of annular gratings and then got the modulation transfer function (MTF) from the zeroth order Hankel transform of the intensity distribution function. Binaryphase annular grating shows higher diffraction efficiency than binary phase rectangular grating. But the MTF decreases linearly in the low-frequency region as that of rectangular grating does. The diffraction pattern of 4-phase annular grating is similar to that of 2-phase grating and hence MTFs of the two are much alike. For 8-phase annular grating, the 7th order diffracted beam is the lowest one next to the first. Consequently, the diffraction efficiency is very high and the MTF graph is curved upward. The diffracted beams except the first order are negligible and hence the MTF characteristics are more improved in the case of 16-phase grating. But the degree of improvement becomes lowered c(Impaled with 8-phase grating. We made a 16-phase annular grating and measured its MTF. The experimental result agrees well with the calculated one.