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COMPUTATION OF THE DYNAMIC FORCE COMPONENT
ON A VERTICAL CYLINDER DUE TO SECOND ORDER
WAVE DIFFRACTION

DAMBARU BHATTA

ABSTRACT. Here we consider the evaluation of the the dynamic component
of the second order force due to wave diffraction by a circular cylinder ana-
lytically and numerically. The cylinder is fixed, vertical, surface piercing in
water of finite uniform depth. The formulation of the wave-structure inter-
action is based on the assumption of a homogeneous, ideal, incompressible,
and inviscid fluid. The nonlinearity in the wave-structure interaction prob-
lem arises from the free surface boundary conditions, namely, dynamic and
kinematic free surface boundary conditions. We expand the velocity po-
tential and free surface elevation functions in terms of a small parameter
and then consider the second order diffraction problem. After deriving the
pressure using Bernoulli’s equation, we obtain the analytical expression for
the dynamic component of the second order force on the cylinder by in-
tegrating the pressure over the wetted surface. The computation of the
dynamic force component requires only the first order velocity potential.
Numerical results for the dynamic force component are presented.
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1. Introduction

Designing safe offshore structures is one of the aims of many companies
throughout the world. The forces due to surface waves on offshore structures
such as drilling rigs or submerged oil storgae tanks are important in designing
large submerged or semi-merged structures. The accurate prediction of the wa-
ter wave forces on offshore structures is one of the main interests in designing
safe offshore structures. The structure may be fixed or floating as semi-merged
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structure in sea. There is a large number of structures which are composed of
tubular members like circular cylinders. When the structure spans a signifi-
cant amount of wavelength, the incident waves undergo scattering or diffraction.
Diffraction of waves needs to be considered while evaluating the wave forces.

Many scientific investigations have been perfomed by many scientists and
engineers in the field of floating and fixed structures. The linear problem at the
first order for a fixed cylinder (diffraction problem) was first solved by MacCamy
and Fuchs [11]. The problem of scattering of surface waves was carried out
by Miles and Gilbert [12] and then by Garrett [8]. Black, Mei and Bray [1]
have calculated the wave forces on a truncated cylinder which either extends
to the free surface or rests on the seabed. Garrison [9] presented a numerical
method for the compuatations of wave excitation forces as well as added mass and
damping coefficients for large objects in water of finite depth. The investigation
of nonlinear diffraction theory was introduced by many researchers including
Chakrabarti [2, 3] to correlate experimental data with the theory. Solutions
for standing and progressive small amplitude water waves provide the basis for
application to numerous problems of engineering interest. Dean and Dalrymple
[5] presented the formulation of the linear water ware theory and development
of the simplest two-dimensional solution for standing and progressive waves.
Debnath [6] discussed theoretical studies of nonlinear water waves over the last
few decades. He studied the theory of nonlinear shallow water waves and solitons,
with emphasis on methods and solutions of several evolution equations that are
originated in the theory of water waves. Rahman {13, 14] presented a nonlinear
wave loads on a large circular cylinder using perturbation technique. A second
order solution for the diffraction of nonlinear progressive wave in deep water was
derived by Hunt and Baddour [10]. Rahman and Heaps [15] studied nonlinear
theory of wave diffraction and derived the forces exerted on a cylinder of large
diameter using perturbation technique. Analytical solution was expressed in the
form an integral. Eatock Taylor and Hung [7] presented analytical expressions
for the second order force on a circular cylinder. Chau and Eatock Taylor [4]
provided a detailed analysis of the second order diffraction problem of a uniform
vertical cylinder in regular waves.

In the present work, we consider the evaluation of the the dynamic compo-
nent of the second order force due to wave diffraction by a circular cylinder
analytically and numerically. The cylinder is fixed, vertical, surface piercing in
water of finite uniform depth. The formulation of the wave-structure interaction
is based on the assumption of a homogeneous, ideal, incompressible, and invis-
cid fluid. We expand the velocity potential and free surface elevation functions
in terms of a small parameter and then consider the second order diffraction
problem. After deriving the pressure using Bernoulli’s equation, we obtain the
analytical expression for the dynamic component of the second order force on the
cylinder by integrating the pressure over the wetted surface. The computation
of the dynamic force component requires only the first order velocity potential.
Numerical results for the dynamic force component are presented.
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2. Boundary value problem in terms of velocity potential

Here we consider a fixed, vertical, circular cylinder in water of finite uniform
depth. The cylinder extends from sea floor (z = —h) to the free surface (z =
n(z,y,t)). Water depth is h, the free surface elevation function is 7(z,y,t) and
the radius of the cylinder is a. Incident wave is propagating along positive x-
direction. The incoming wave incident upon the surface of the cylinder undergoes
a scattering or diffraction. To evaluate the wave loads on the cylinder, we need
to consider the effect due to the incident wave and the diffracted wave.

The cylindrical coordinate system (r,6,z) with z vertically upwards from
the still water level ( SWL ), 7 measured radially from the z-axis and 6 from
the positive z—axis is used. For Cartesian coordinates (z, y, z), xy—plane
represents the still water level (SWL) and z-axis positive upward from the SWL.
Cartesian and Cylindrical coordinates are related by z = rcosf, y = rsin,
Z=z.

The formulation is based on the assumptions of ideal, incompressible and
inviscid fluid. We assume that sea floor is flat, horizontal and located at z = —h.

The equation of continuity for a fluid with the velocity v and density p is
given by

dp
bt . =0. 1
B +V- (pv)=0 (1)
For an incompressible fluid, the continuity equation is
V.v=0 (2)

where v is the velocity of the fluid. For an incompressible and inviscid fluid with
irrotational motion, we can introduce a velocity potential ¢(r, 6, z,t) such that

V= V¢(r,0,z,t) (3)

Equations (2) and (3) yield that ¢(r, 0, z,t) satisfies the Laplace equation in
the fluid domain, i.e.,

V2¢(T‘, g, Zat) =0. (4)
We will assume that ¢ is time harmonic.
The force components Fy, Fy, along z,y directions are given by

27 n
F, = / / P(a,0,z,t)(—cosB)dA, (5)
8=0Jz=—h

2n n
F, = / / P(a,6, 2, t)(— sin8) dA (6)
0=0Jz=~-h

respectively. Here P(a, 0, z,t) is the pressure on the curved surface of the cylinder
which can be computed from the velocity potential ¢ using Bernoulli’s equation,
n is the free surface elevation function and dA = adfdz.

The boundary value problem in terms of ¢{z,y, z,t) and n(z,y,t) can be ex-
pressed as
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governing Equation :
52 2 2
o’¢ 0% 5%
0r? Oy 0z

dynamic free surface boundary condition at z =7 :

¢ 2 ¢ 2 ¢ 2 ~
(52) +(5) +(5) |- ®)
Here g is the acceleration due to gravity. Kinematic free surface boundary
condition at z =17 is :

=0, (7)

06 iyl
ot 91T g

on 060y  060n 096 _ (9)
ot  0zxdz Oydy 0z

Since the cylinder is fixed, the normal velocity is zero, so the body surface
boundary condition on the curved surface is given by

3}

a—f: =0, r=a (10)
where n is the outward normal. Assuming that sea floor is flat and horizontal,
the bottom boundary condition at z = —h can be expressed as

o¢

— =0 = —h 11

= =0, : (11)

The velocity potential ¢ can be expressed as ¢ = ¢r + ¢p where ¢; and ¢p
represent the incident velocity potential and diffracted velocity potential respec-
tively. The diffracted potential ¢p satisfies the radiation condition at infinity,
ie.,

lim /r (ag;r]) —ik¢D) =0

T 00

where r = v/x2 + 92 and k is the wavenumber.
The velocity potential ¢(z,y, z,t) and the surface elevation 7(z,y,t) can be
written in terms of Stokes expansion as

d)(-'L',y, Z,t) = ed’l (IL‘, Y 2, t) + €2¢2($7y) Z, t) + 0(63) + .. (12)
n(z,y,1) em(z,y,t) + €m(z,y,1) + O(%) + ... (13)

i

Here € is the dimensionless small parameter defined by (= kA) where k (= 27/L)
the wavenumber, L the wavelength, A wave amplitude. ¢; is the first expansion
term corresponding to a linear approximation of the velocity potential, ¢, is the
second order approximation. 7 and 7, are the first order (linear) and second
order approximations of the elevation function.
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At the free surface, we have z = n(z, y,t), so ¢(z,y, 2z,t) = ¢(z,y,n,t). Expand-
ing by Taylor’s theorem about z = 0, we have

_ o¢ d%¢
¢($C, R(B t) = ¢(x,y, O,t) +n (5;) L + L (W)
e1(z,9,0,t) + €22(z,4,0,8) + ...

+ (em + ém +..) {2 (b1 + €62 + )}

z=0

(e + 2 + . )}

+(em +em+.)? (8
2 822 220

The modified velocity potential at the free surface is

¢(III, v t) = e¢1(:v,y,0,t) ¢2($ yao t) +m ¢1 +0 (63) . (14)
0z 220

Dynamic free surface boundary condition now is given by

O b2 8¢y
€<"a—t +g771)+ [ 6t + +7718taz

) 5]

Kinematic free surface boundary condition becomes

(3771 %) g <3772 +6¢1 om

+0(f) =0, z=0.

ot 0z ot dr Oz

0P Om O 6¢1)+O() 0, z=0.

By 0y 0z a2

Thus the free surface boundary conditions for the second order theory can be
derived from the coefficients of €2.
The seond order dynamic free surface boundary condition is given by

0o 1
B +g772+7716ta +

) (5@ e o

The second order kinematic free surface boundary condition can be written as

Om 061 Om 01 Om 042 O
ot ' Oz bz ' oy Oy 0z @ " Bz

=0, z=0. (16)
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Eliminating nyand 7, from the equations (15) and (16), the combined free surface
condition is obtained as

¢2 | B¢y 9 (8% 8¢
e 95, = M ("aT *95)

2@ @) . o

Now the pressure P(z,y,2,t) can be determined from Bernoulli’s equation
P 0¢ 1 2
il iz =0 18
p+gz+8t+2(v¢) (18)
" V)2 = (28 2 06\% | (98\2 _ (09)? 09\, (09>
where (V¢) '(m) +(8y) +<Bz) = 67') +(r39) +(az> '
Substituting power series expansion for ¢, we have

1
P = —pgz — ep% —€%p [-2- {(V¢1)2} + %J +0 (). (19)

The total horizontal force can be obtained by integrating the wetted surface
of the cylinder and can be expressed as

2r s
F, = / / P(a,8,z,t)(—acosf)dz df.
0o J-n

Since the incident wave is parallel to z—axis, F;, = 0. Writing the z—integral as
the sum of ffh + [y, we obtain

_ e 01 | o1 2, 0
o[ |[ o GreGonre )} e

mtinm 91 a1 9¢
AL TN 2, Y92
+/0 {gz+e Bt +e€ (2(V¢1) + Y )}r:adz cos 0d6. (20)

Using the series expansion for force components, we have
Fy = eFy + € Fpy + & Fpy + ... (21)

where F;, stands for the i**-order contribution.
The velocity potential function for the first order diffraction problem can be
obtained as

_ gAcoshk(z+h) = m
0i(r6,2) = " Re mz::oﬂmz {Jm (k7)
()
————————J(T)(,ka) HY(kr) 3 e7"% cosmb| . (22)
Hy' (ka)

Here o =1, B =2form > 1, Jy,(kr) and H,(,})(kr) (= Im(kr) +iYm(kr)) are
Bessel and Hankel functions of first kind of order m respectively and o is the
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frequency. We use the separation of variables method to obtain the solution by
writing ®4(r, 0, z) = R(r) ©(0) Z(z). This yields Bessel equation, for the incident
potential we obtain the solution in terms of Bessel function of first kind and for
the scattered potential we obtain the solution in terms of Hankel function of first
kind. Also from the first order combined free surface condition, we have

0?2 = gk tanhkh. (23)

This relation is known as the dispersion relation for the first order problem.
The second order contribution to the force on the cylinder is given by

27 em ¢1}
a z+e dz
”/o [/0 {g at

0
+62/h{—;—(v¢1) +?git?l} dz] cosfdf (24)

= {FD+F@+FP + FO}. (25)

F,,

The third component F,gg) is known as the dynamic component of the second
order force. We will concentrate on derivation and evaluation of this component
which requires the first order velocity potential function.

Thus the dynamic component of the second order force is given by

2w 0
F® = ap/ [/ 5 (Vo) dz} cos 6 df (26)
0 h

2 2 2
where (V¢1)? = (%Q}) + (—f—gg) + (%‘%‘) .
For two complex numbers U and V, we can write

Re[Ue ™| Re[Ve ™| = %Re [UVe #t+UV]. (27)

Using the result mentioned in equation (27), we obtain

600 g f (Y ), 207
or 2 87' 8r

8¢1\” 1 00:\" _oii| , 001 aq>1
0l 2 00 r60 r69
% : l 6¢.1 2 --Zwt 3‘1’1 8®1
0z 2 8z az 8z
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Thus we have

(V¢1 )12~=a =

or

Now defining B,

1 [Re {(VCD e -2“"}
0%, 9%;

L T T
08 rH0 0z 0z

—@ﬂﬁ’r(— we obtain

(%),
0z r=a

o%m2q2?

4¢°A? sinh®k(z + h)
B, 6
cosh® kh Z cosm

0n\' 4P
r80 ), .,  o’r2k%at

09\
(WLG =0

0
/ cosh® k(z + h) dz
—h

Since

0
/ sinh? k(z + h) dz

—h

we obtain

2
cosh?k(z + h)
T kh ( E nBy, sin nO)

/ [cosh2k(z + h) + 1] dz

(smh 2kh + 1) and

2kh

sinh 2kh _1
2kh ’

1
2
h
2
h
2

/° 8%, \? 5 = 4g2 A2 sinh2kh
a\ 92 /. _, " n2a202 2cosh?kh \ 2kh

2gA?

0o 2
1) (Z B,, cos nﬂ)
n=0

m2k2q?

2
2kh > B o
~ Sinh 2kh Z n COSTL

0 2 2
IRES I
_w\706/,_, 72k

and on r = q,

LT -

2kh
smh 2kh) (Z nBy, sin n0>

2gA? 1 2kh
m2k2q2 sinh 2kh

X (ij%B" cosnG) (iOB_m cosmH) (29)
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/0 %\ (0%, 29A? 2kh
— || =5 ]dz = 14—
_p \ 108 r00 w2kt sinh 2kh

X (i nBy, sin nG) (i m B, sin m9> {30)

n=0 m=0

Multiplying the equations (29) and (30) by cos§, and integrating with respect
to 6 from 0 to 2w, we have

21 2
0%, 894 2kh
/ / < ) < ) dz cosfdf = k22 ( sinh 2kh) ZP‘ ka)

(31)
2m 0%, 8gA? 2kh
/ / (r60> < )dz cosbdf =~ opigt (H sinh2kh>

X f: i(1+ 1)Py(ka) (32)

=0

where
T (ka)Y/ (ka) = J/(ka)Y{,, (ka)
Rlka) = g (33)
Dy(ka) = (Ji(ka))+ (¥{(ka))® (34)
and ‘

27 0 2
0%, —9ict 8gA __2kh
/0 /_h Re [( P ) dz cos8df = k22 1 YA

X Z ~1)"*1{Qy(ka) cos 2t + R;(ka)sin20t}  (35)
1=0

and
27 0 2
08,\% st 8gA o%kh
/0 / Re [( 60) ] dz cosbdf = “oiaar \1 T Sinhokn
Z DU+ 1) {Qi(ka) cos 20t + Ry(ka)sin 20t} .  (36)
=0
Here

J{(ka)YYy, (ka) + {1 (k)Y (ka)
Di(ka)Di1(ka) ’
Y/ (ka)Y/,(ka) — J{(ka)J],, (ka)
Di(ka)Dyy1(ka)

Qu(ka) (37)

Ri(ka) (38)
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Hence dynamic component in the second order force is

where P;, Q;, R; are given by equations (33), (37) and (38) respectively.

P

F(3)

_ap 8gA2
4 mk%a?

[ [}

h2

(-

2kh

(o <]

sinh 2kh> Z {=P

(V¢1)r"—- dz] cos 0 df

+(=1)"*1(Q; cos 20t + R, sin 20t)}

(1+

2kh

sinh 2kh> lz:;

Il +1)
k2a?

{-P,

+(=1)"*"1 (Qi cos 20t + Rysin20t)}] .

Nondimensional dynamic force component is

=

Table 1. Coeflicient P,(ka)/(ka)?

pgaA? ~

2 2kh
m(ka)? g [{ (1 ~ sinh 2kh>
(+1) 2kh
M (1 T Soh 2kh) }

x {~Pi+ (-1)'*" (Qicos 20t + Ry sin20t) }]

3. Numerical results

for various ka.

L]

ka=0.5

|

ka=1.0

|

ka=2.0

l

ka=>5.0

|

0.35515038796

0.91897207019

0.71798356187

0.31078056984

0.34172646214

0.80345154422

1.11564372289

0.61891433173

0.34172179716

0.80146131731

1.00703643158

0.91780493601

0.34172179691

0.80145958914

1.00008079423

1.18229031284

0.34172179691

0.80145958868

1.00004712071

1.31108863429

0.34172179691

0.80145958868

1.00004705866

1.24268190466

0.34172179691

0.80145958868

1.00004705861

1.22482706741

0.34172179691

0.80145958868

1.00004705861

1.22428938225

0.34172179691

0.80145958868

1.00004705861

1.22428209884

0.34172179691

0.80145958868

1.00004705861

1.2242820399

0.34172179691

0.80145958868

1.00004705861

1.2242820396

0.34172179691

(0.80145958868

1.00004705861

1.2242820396

0.34172179691

0.80145958868

1.00004705861

1.2242820396

0.34172179691

0.80145958868

1.00004705861

1.2242820396

0.34172179691

0.80145958868

1.00004705861

1.2242820396

S5 B ol ol 2| 5] ©f oo < o | x| o nof =

0.34172179691

0.80145958868

1.00004705861

1.2242820396

(39)
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Table 2. Coeficient Q;(ka)/(ka)? for various ka.

(T1] k=05 | k=10 | ka=20 | ka=50 |
-0.01747800339 | 0.1856387247 | 0.74911350851 | 0.22987741645
-0.03180304572 | 000377653753 | 0.5158831474 | -0.07778580088
-0.03180870912 | 0.0016091573 | 0.20623077823 | 0.22195434804
~0.03180870937 | 000160735376 | 0.28784431802 | 0.37049930902
-0.03180870937 | 0.00160735328 | 0.28780682487 | 0.10452794738
-0.03180870937 | 0.00160735328 | 0.28780675828 | -0.10985705815
-0.03180870937 | 0.00160735328 | 0.28780675822 | -0.13711066689
-0.03180870937 | 0.00160735328 | 0.28780675822 | -0.13781993899
-0.03180870937 | 0.00160735328 | 0.28780675822 | -0.13782889759
-0.03180870937 | 000160735328 | 0.28780675822 | -0.1375289668
-0.03180870937 | 0.00160735328 | 0.28780675822 | -0.13782896714
-0.03180870937 | 000160735328 | 0.28780675822 | -0.13782896714
-0.03180870937 | 0.00160735328 | 028780675822 | -0.13782896714
-0.03180870937 | 000160735328 | 0.28780675822 | -0.13782896714
-0.03180870937 | 0.00160735328 | 0.28780675822 | -0.13782896714
-0.03180870937 | 0.00160735328 | 0.28780675822 | -0.13782896714

[ ey e e e T
o = Bes et By e P T e RS T RS RSN TS N

Now we present the computational results for the dynamic component Fx(f)
of the second order force. Since the contribution to the dynamic component of
the second order force is based on the coefficients P;(ka), Qi(ka),R;i(ka), first we
compute the expressions for Pi(ka), Q;(ka),R;(ka) given by the equations (33),
(37) and (38) respectively.

The terms involved in the computation of the dynamic component of the
second order force are computed as function of [, the number of terms in the
summation for various ka. These computational results for P,(ka)/(ka)?,
Qi(ka)/(ka)® and R;(ka)/(ka)? are presented in table 1, table 2 and table
3forl=1,2, .. 16. From these numerical results, it is obvious that we only
need few terms in the infinite summation over .

The term Pj(ka)/(ka)? given by equation (33) is shown in table 1 for ka=0.5,
1.0, 2.0, 5.0.

The term Q;(ka)/(ka)? given by equation (37) is shown in table 2 for ka =
0.5, 1.0, 2.0, 5.0.

The term Ry(ka)/(ka)? given by equation (38) is presented in table 3 for
ka=0.5, 1.0, 2.0, 3.0.

Numerical results for the term Pj(ka)/(ka)? given by equation (33) is dis-
played in figure 1 for ka= 1.0, 2.0.
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shown in figure 2 for ka= 1.0, 2.0.

Similar results for R;(ka)/(ka)? given by equation (38) is presented in figure

3 for ka= 1.0, 2.0.

As a conclusion from the above results, we take {=15 for all further compu-

tations.

Now we present the numerical results for the nondimensional dynamic force

component

24

F

 pgaA?

T ,f} H (1

-+

B 2kh
sinh 2kh

2kh

I(1+1) (1

+ sinh 2kh> }

x {~P, + (=1)" (Qi cos 20t + R;sin20t)}]

where P, Q;, R, are given by equations (33), (37) and (38) respectively.

Table 3. Coefficient R;(ka)/(ka)? for various ka.

[11] k=05 ka=10 ka=2.0 ka=5.0

1 |1.05614031698 | 1.1870367375 | 0.0522677932 | 0.21163876987
2 | 1.13242538234 | 1.57224494449 | 0.80741461263 | 0.10885706054
3 | 1.13322361276 | 1.50716579926 | 1.1572042222 | -0.07473893988
4 | 1.13322771179 | 1.5076525683 | 1.00879045762 | 0.2963727395
5 | 113322772461 | 1.50765876017 | 1.21136152271 | 0.65910565001
6 | 113302772463 | 1.50765881214 | 1.21144810527 | 0.90708167604
7 | 1.13302772463 | 1.50765881246 | 1.21145022062 | 0.99371975271
8 | 1.13322772463 | 1.50765881246 | 1.21145025035 | 1.00536072057
9 | 1.13322772463 | 1.50765881246 | 1.2114502599 | 100647290806
10 | 1.13302772463 | 159765881246 | 1.2114502500 | 1.00655729852
11 | 1.13302772463 | 159765881246 | 1.2114502599 | 1.00656255935
12 | 1.13322772463 | 1.59765881246 | 1.2114502509 | 1.00656282986
13 | 1.13322772463 | 1.50765881246 | 1.2114502509 | 1.00656284151
14 | 1.13302772463 | 150765881246 | 1.2114502509 | 1.00656284194
15 | 1.13322772463 | 150765881246 | 1.2114502599 | 100656284195

1.13322772463

1.59765881246

1.2114502599

1.00656284195
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14+ s—+ ka=1.0
oo ka=2.0
12
T [}
'35 i+ 0-6-0-0~0-0-0-0-0-0-0~0-0-0
X
A
08| -0~ 0-9-0-8-0-0-0-0-0-0—0~-0—0
(4]
06 I ; ! 1 1
0 3 6 8 12 15
| —

Figure 1. Coefficient Pi(ka)/(ka)? as function of I.

121 e——e ka=1.0

o—o ka=2.0
08F

06 \

03 0-0-0~0~0~0~0~0~0=0~0~0~0~0

Qy(ka)® —

QF e-0-0-0-9-0-0-9-0-0-0-0-0-0-¢

1 1 1 1 i

0 3 6 9 12 15
=

Figure 2. Coefficient Q;(ka)/(ka)? as function of I.

s—e ka=1.0
251 o0 Ka=20
2F
‘\T 15} 9= —P-P-0-0-F-0-0-0-0-0-0~8
g’ [ 0-0-~0-0-0-0-0-0-0-0-0-0-0-0
e 1/
Y
0.5 | /
ole 1 L 1 1 %
0 3 6 9 12 15

I—

Figure 3. Coefficient R;(ka)/(ka)? as function of 1.
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s—1 1=00
25 e gt = 0.5
ol —_— at=12

1.5

0s5F \

Fof(ka)® —

o
05

0 1.2 24 36 48 6
ka—

Figure 4. Dynamic force component F;/(ka)? as a function of ka for
h/a=1.0.
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Figure 5. Dynamic force component F,/(ka)? as a function of ka for
h/a=2.0.
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Figure 6. Dynamic force component F;/(ka)? as a function of ka for
h/a=3.0.



Computation of the dynamic force component
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Figure 7. Dynamic force component Fy/(ka)? as a function of ka for

h/a = 4.0.
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Figure 8. Dynamic force component Fy/(ka)? as a function of ka for

h/a =5.0.
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Figure 9. Dynamic force component F>/(ka)? as a function of ka for ot = 0.0.
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