• Title/Summary/Keyword: Diffraction optical tomography

Search Result 8, Processing Time 0.031 seconds

Optimized Working Distance of a Micro-optic OCT Imaging Probe

  • Kim, Da-Seul;Moon, Sucbei
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.330-335
    • /
    • 2020
  • We have investigated optimization of the working distance (WD) for a highly miniaturized imaging probe for endoscopic optical coherence tomography (OCT). The WD is the axial distance from the distal end of the imaging probe to its beam focus, which is demanded for dimensional margins of protective structures, operational safety, or full utilization of the axial imaging range of OCT. With an objective lens smaller than a few hundred micrometers in diameter, a micro-optic imaging probe naturally exhibits a very short WD due to the down-scaled optical structure. For a maximized WD careful design is required with the optical aperture of the objective lens optimally filled by the incident beam. The diffraction-involved effect was taken into account in our analysis of the apertured beam. In this study, we developed a simple design formula on the maximum achievable WD based on our diffraction simulation. It was found that the maximum WD is proportional to the aperture size squared. In experiment, we designed and fabricated very compact OCT probes with long WDs. Our 165-㎛-thick fiber-optic probes provided WDs of 3 mm or longer w ith reasonable OCT imaging performance.

Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography

  • Kim, Youngkyu;Kim, Tae-Keun;Shin, Yeonhee;Tak, Eunyoung;Song, Gi-Won;Oh, Yeon-Mok;Kim, Jun Ki;Pack, Chan-Gi
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.851-860
    • /
    • 2021
  • Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.

Three-dimensional Refractive-index Distributions of Individual Angiosperm Pollen Grains

  • Park, Chansuk;Lee, SangYun;Kim, Geon;Lee, SeungJun;Lee, Jaehoon;Heo, Taehyun;Park, Yoonjeong;Park, YongKeun
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.460-467
    • /
    • 2018
  • Three-dimensional (3D) refractive-index (RI) imaging and quantitative analyses of angiosperm pollen grains are presented. Using optical diffraction tomography, the 3D RI structures of individual angiosperm pollen grains were measured without using labeling or other preparation techniques. Various physical quantities including volume, surface area, exine volume, and sphericity were determined from the measured RI tomograms of pollen grains. Exine skeletons, the distinct internal structures of angiosperm pollen grains, were identified and systematically analyzed.

Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)

  • Kus, Arkadiusz;Krauze, Wojciech;Makowski, Piotr L.;Kujawinska, Malgorzata
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.61-72
    • /
    • 2019
  • In this paper, we demonstrate the current concepts in holographic tomography (HT) realized within limited angular range with illumination scanning. The presented solutions are based on the work performed at Warsaw University of Technology in Poland and put in context with the state of the art in HT. Along with the theoretical framework for HT, the optimum reconstruction process and data visualization are described in detail. The paper is concluded with the description of hardware configuration and the visualization of tomographic reconstruction, which is calculated using a provided processing path.

High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton

  • Lee, SangYun;Kim, Kyoohyun;Mubarok, Adam;Panduwirawan, Adisetyo;Lee, KyeoReh;Lee, Shinhwa;Park, HyunJoo;Park, YongKeun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.691-697
    • /
    • 2014
  • Optical measurements of the morphological and biochemical imaging of phytoplankton are presented. Employing quantitative phase imaging techniques, 3-D refractive index maps and high-resolution 2-D quantitative phase images of individual live phytoplankton are simultaneously obtained without exogenous labeling agents. In addition, biochemical information of individual phytoplankton including volume, mass, and density of individual phytoplankton are also quantitatively obtained from the measured refractive index distributions. We expect the present method to become a powerful tool for the study of phytoplankton.

Effective Volume Rendering and Virtual Staining Framework for Visualizing 3D Cell Image Data (3차원 세포 영상 데이터의 효과적인 볼륨 렌더링 및 가상 염색 프레임워크)

  • Kim, Taeho;Park, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, we introduce a visualization framework for cell image data obtained from optical diffraction tomography (ODT), including a method for representing cell morphology in 3D virtual environment and a color mapping protocol. Unlike commonly known volume data sets, such as CT images of human organ or industrial machinery, that have solid structural information, the cell image data have rather vague information with much morphological variations on the boundaries. Therefore, it is difficult to come up with consistent representation of cell structure for visualization results. To obtain desired visual representation of cellular structures, we propose an interactive visualization technique for the ODT data. In visualization of 3D shape of the cell, we adopt a volume rendering technique which is generally applied to volume data visualization and improve the quality of volume rendering result by using empty space jittering method. Furthermore, we provide a layer-based independent rendering method for multiple transfer functions to represent two or more cellular structures in unified render window. In the experiment, we examined effectiveness of proposed method by visualizing various type of the cell obtained from the microscope which can capture ODT image and fluorescence image together.

Material Properties of GeSbSe Chalcogenide Glass and Fabrication Process for 8~12 ㎛ IR Region Aspherical Optical Lens (GeSbSe계 기반 8~12 ㎛ 파장대역 적외선 광학 렌즈 제작 및 비구면 렌즈 가공기술 개발)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Han, Sang-Hyun;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • The chalcogenide glass has superior optical properties in IR region transmittances. We have determined the composition of GeSbSe chalcogenide glass for the application of good IR lenses, resulting in the composite rate of $Ge_{19}Sb_{23}Se_{58}$. The optical, structural, thermal and physical properties were measured by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), X-ray computed tomography (X-ray CT) respectively. The fabrication of the chalcogenide glass lens for infrared optics applications was proposed using a diamond turning machining technology which is known as the suitable ways for the production cost reduction and the accurate fabrication process control.

홀로그래픽 회절 토모그래피와 그 생물학적 응용

  • Gang, Pil-Seong;Choe, Won-Sik
    • Broadcasting and Media Magazine
    • /
    • v.18 no.3
    • /
    • pp.95-108
    • /
    • 2013
  • 디지털 홀로그래픽 현미경이나 정량적 위상 현미경(quantitative phase microscopy)과 같은 기존의 간섭현미경은 3차원 이미징 기술로 분류되는데, 이는 획득한 이미지의 복소장(complex field)을 계산을 통해 다른 깊이로 전파시킬 수 있기 때문이다. 그러나 엄밀한 의미에서는 하나의 복소장 이미지는 단지 2차원 맵이기 때문에 근본적으로는 샘플의 2차원 정보만을 가지고, 물체의 3차원 구조의 일부분을 측정하는 것에 지나지 않는다. 본 논문에서는 1969년에 Wolf가 제안한[1,2] 홀로그래픽 회절 토모그래피(Optical Diffraction Tomography: ODT)를 실험적으로 구현한 3차원 위상 현미경(Tomographic Phase Microscopy: TPM)을 소개하고자 한다. TPM은 샘플을 다양한 각도로 조명하여 서로 다른 입사각에 대해 복소장 이미지를 얻고, ODT를 통해서 샘플의 3차원 구조를 복원해내는 기술이다. 보다 구체적으로는 다양하고 독립적인 2차원 이미지들을 샘플의 3차원 푸리에 공간에 맵핑함으로써 샘플 단면의 흡수율과 굴절률을 복원할 수 있다. 굴절률은 분자 농도와 비례하기 때문에, 살아있는 세포에 대한 굴절률의 3차원 맵을 얻을 수 있으면 세포 내부의 분자 구성을 연구할 수 있고, 이를 통해 다양한 생의학적 응용을 연구할 수 있다.