홀로그래픽 회절 토모그래피와 그 생물학적 응용

  • Published : 2013.07.30

Abstract

디지털 홀로그래픽 현미경이나 정량적 위상 현미경(quantitative phase microscopy)과 같은 기존의 간섭현미경은 3차원 이미징 기술로 분류되는데, 이는 획득한 이미지의 복소장(complex field)을 계산을 통해 다른 깊이로 전파시킬 수 있기 때문이다. 그러나 엄밀한 의미에서는 하나의 복소장 이미지는 단지 2차원 맵이기 때문에 근본적으로는 샘플의 2차원 정보만을 가지고, 물체의 3차원 구조의 일부분을 측정하는 것에 지나지 않는다. 본 논문에서는 1969년에 Wolf가 제안한[1,2] 홀로그래픽 회절 토모그래피(Optical Diffraction Tomography: ODT)를 실험적으로 구현한 3차원 위상 현미경(Tomographic Phase Microscopy: TPM)을 소개하고자 한다. TPM은 샘플을 다양한 각도로 조명하여 서로 다른 입사각에 대해 복소장 이미지를 얻고, ODT를 통해서 샘플의 3차원 구조를 복원해내는 기술이다. 보다 구체적으로는 다양하고 독립적인 2차원 이미지들을 샘플의 3차원 푸리에 공간에 맵핑함으로써 샘플 단면의 흡수율과 굴절률을 복원할 수 있다. 굴절률은 분자 농도와 비례하기 때문에, 살아있는 세포에 대한 굴절률의 3차원 맵을 얻을 수 있으면 세포 내부의 분자 구성을 연구할 수 있고, 이를 통해 다양한 생의학적 응용을 연구할 수 있다.

Keywords

References

  1. E. Wolf, Three-dimensional structure determination of semi-transparent object from holographic data, Opt. Commun. 1(4) (1969) 153-156. https://doi.org/10.1016/0030-4018(69)90052-2
  2. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, Cambridge [England], New York, 1999.
  3. F. Zernike, Phase-contrast, a new method for microscopic observation of transparent objects. Part I, Physica 9 (1942) 686-698. https://doi.org/10.1016/S0031-8914(42)80035-X
  4. G. Nomarski, Microinterferometre differentiel a ondes polarisees, J. Phys. Radium 16 (1995) 9S-11S.
  5. Y.K. Park, G. Popescu, K. Badizadegan, R. R. Dasari, M. S. Feld, Diffraction phase and fluorescence microscopy, Opt. Express 14(18) (2006) 8263-8268 https://doi.org/10.1364/OE.14.008263
  6. G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, Observation of dynamic subdomain in red blood cells, J Biomed. Opt. 11(4) (2006) 040503. https://doi.org/10.1117/1.2221867
  7. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld, Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy, Opt. Lett. 32(11) (2007) 1572-1574. https://doi.org/10.1364/OL.32.001572
  8. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Opt. Lett. 30(5) (2005) 468-470. https://doi.org/10.1364/OL.30.000468
  9. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Quantitative optical phase microscopy, Opt. Lett. 23(11) (1998) 817-819. https://doi.org/10.1364/OL.23.000817
  10. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, Quantitative phase tomography, Opt. Commun. 175(4-6) (2000) 329-336. https://doi.org/10.1016/S0030-4018(99)00726-9
  11. V. Lauer, New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope, J. Microsc. 205(Pt2) (2002) 165-176. https://doi.org/10.1046/j.0022-2720.2001.00980.x
  12. F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba, Opt. Express 14(16) (2006) 7005-7013. https://doi.org/10.1364/OE.14.007005
  13. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, Tomographic phase microscopy, Nat. Methods 4(9) (2007) 717-719. https://doi.org/10.1038/nmeth1078
  14. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, Submicrometer optical tomography by multiple-wavelength digital holographic microscopy, Appl. Opt. 45(32) (2006) 8209-8217. https://doi.org/10.1364/AO.45.008209
  15. L. F. Yu, and M. K. Kim, Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method, Opt. Lett. 30(16) (2005) 2092-2094. https://doi.org/10.1364/OL.30.002092
  16. W. Gorski, and W. Osten, Tomographic imaging of photonic crystal fibers, Opt. Lett. 32(14) (2007) 1977-1979. https://doi.org/10.1364/OL.32.001977
  17. F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, Cell refractive index tomography by digital holographic microscopy, Opt. Lett. 31(2) (2006) 178-180. https://doi.org/10.1364/OL.31.000178
  18. K. C. Tam, and V. Perezmendez, Tomographical imaging with limited-angle input, J. Opt. Soc. Am. 71(5) (1981) 582- 592. https://doi.org/10.1364/JOSA.71.000582
  19. B. P. Medoff, W. R. Brody, M. Nassi, and A. Macovski, Iterative convolution backprojection algorithms for imagereconstruction from limited data, J. Opt. Soc. Am. 73(11) (1983) 1493-1500. https://doi.org/10.1364/JOSA.73.001493
  20. Y. Sung, and R. R. Dasari, Deterministic regularization of three-dimensional optical diffraction tomography, J. Opt. Soc. Am. A 28(8) (2011) 1554-4561. https://doi.org/10.1364/JOSAA.28.001554
  21. A. C. Kak, and M. Slaney, Principles of Computerized Tomographic Imaging, Academic Press, New York, 1999.
  22. M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, Holographic microscopy and diffractive microtomography of transparent samples, Meas. Sci. Technol. 19(7) (2008) 074009. https://doi.org/10.1088/0957-0233/19/7/074009
  23. A. J. Devaney, Inverse-scattering theory within the Rytov approximation, Opt. Lett. 6(8) (1981) 374-376. https://doi.org/10.1364/OL.6.000374
  24. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, Optical diffraction tomography for high resolution live cell imaging, Opt. Express 17(1) (2009) 266-277. https://doi.org/10.1364/OE.17.000266
  25. C. Fang-Yen, W. Choi, Y. J. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, Video-rate tomographic phase microscopy, J. Biomed. Opt. 16(1) (2011) 011005. https://doi.org/10.1117/1.3522506
  26. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. S. Choi, M. S. Feld, and S. Suresh, Refractive index maps and membrane dynamics of humal red blood cells parasitized by Plasmodium falciparum, Proc. Natl. Acad. Sci. USA 105(37) (2008) 13730-13735. https://doi.org/10.1073/pnas.0806100105