• Title/Summary/Keyword: Diffie-Hellman problem

Search Result 66, Processing Time 0.02 seconds

Design of the Mail Protocol with Perfect Forward Security (전방향 안전성이 보장되는 메일 프로토콜 설계)

  • Shin, Seung-Soo;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • When the existing mail system is attacked by the third party, its content is exposed fully. To solve this problem, designed is the mail encryption system which can send and receive mail safely by the sessionkey. The mail receiver opens encrypted mail with the session key. In the traditional mail system, the server administrator can view mail content. However, in the proposed protocol, the server can only save mail as encryption/decryption is applied. Also, the ARIA encryption algorithm is used in encryption/decryption for better safety, and fast XOR operations are used to reduce the amount of operations.

A Secure and Efficient E-Medical Record System via Searchable Encryption in Public Platform

  • Xu, Lei;Xu, Chungen;Zhang, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4624-4640
    • /
    • 2017
  • This paper mainly presents a secure and efficient e-Medical Record System via searchable encryption scheme from asymmetric pairings, which could provide privacy data search and encrypt function for patients and doctors in public platform. The core technique of this system is an extension public key encryption system with keyword search, which the server could test whether or not the files stored in platform contain the keyword without leaking the information about the encrypted file. Compared with former e-medical record systems, the system proposed here has several superior features: (1)Users could search the data stored in cloud server contains some keywords without leaking anything about the origin data. (2) We apply asymmetric pairings to achieve shorter key size scheme in the standard model, and adopt the dual system encryption technique to reduce the scheme's secure problem to the hard Symmetric External Diffie-Hellman assumption, which could against the variety of attacks in the future complex network environment. (3) In the last of paper, we analyze the scheme's efficiency and point out that our scheme is more efficient and secure than some other classical searchable encryption models.

Password Authenticated Joux's Key Exchange Protocol (패스워드 인증된 Joux의 키 교환 프로토콜)

  • Lee Sang-gon;Hitcock Yvonne;Park Young-ho;Moon Sang-jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.5
    • /
    • pp.73-92
    • /
    • 2005
  • Joux's tripartite key agreement protocol is one of the most prominent developments in the area of key agreement. Although certificate-based and ID-based authentication schemes have been proposed to provide authentication for Joux's protocol, no provably secure password-based one round tripartite key agreement protocol has been proposed yet. We propose a secure one round password-based tripartite key agreement protocol that builds on Joux's protocol and adapts PAK-EC scheme for password-based authentication, and present a proof of its security.

A Forward-Secure Certificate-Based Signature Scheme with Enhanced Security in the Standard Model

  • Lu, Yang;Li, Jiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1502-1522
    • /
    • 2019
  • Leakage of secret keys may be the most devastating problem in public key cryptosystems because it means that all security guarantees are missing. The forward security mechanism allows users to update secret keys frequently without updating public keys. Meanwhile, it ensures that an attacker is unable to derive a user's secret keys for any past time, even if it compromises the user's current secret key. Therefore, it offers an effective cryptographic approach to address the private key leakage problem. As an extension of the forward security mechanism in certificate-based public key cryptography, forward-secure certificate-based signature (FS-CBS) has many appealing merits, such as no key escrow, no secure channel and implicit authentication. Until now, there is only one FS-CBS scheme that does not employ the random oracles. Unfortunately, our cryptanalysis indicates that the scheme is subject to the security vulnerability due to the existential forgery attack from the malicious CA. Our attack demonstrates that a CA can destroy its existential unforgeability by implanting trapdoors in system parameters without knowing the target user's secret key. Therefore, it is fair to say that to design a FS-CBS scheme secure against malicious CAs without lying random oracles is still an unsolved issue. To address this problem, we put forward an enhanced FS-CBS scheme without random oracles. Our FS-CBS scheme not only fixes the security weakness in the original scheme, but also significantly optimizes the scheme efficiency. In the standard model, we formally prove its security under the complexity assumption of the square computational Diffie-Hellman problem. In addition, the comparison with the original FS-CBS scheme shows that our scheme offers stronger security guarantee and enjoys better performance.

Security Proof for a Leakage-Resilient Authenticated Key Establishment Protocol

  • Shin, Seong-Han;Kazukuni Kobara;Hideki Imai
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.4
    • /
    • pp.75-90
    • /
    • 2004
  • At Asiacrypt 2003, Shin et al., have proposed a new class for Authenticated Key Establishment (AKE) protocol named Leakage-Resilient AKE ${(LR-AKE)}^{[1]}$. The authenticity of LR-AKE is based on a user's password and his/her stored secrets in both client side and server side. In their LR-AKE protocol, no TRM(Tamper Resistant Modules) is required and leakage of the stored secrets from $.$my side does not reveal my critical information on the password. This property is useful when the following situation is considered :(1) Stored secrets may leak out ;(2) A user communicates with a lot of servers ;(3) A user remembers only one password. The other AKE protocols, such as SSL/TLS and SSH (based or PKI), Password-Authenticated Key Exchange (PAKE) and Threshold-PAKE (T-PAKE), do not satisfy that property under the above-mentioned situation since their stored secrets (or, verification data on password) in either the client or the servers contain enough information to succeed in retrieving the relatively short password with off-line exhaustive search. As of now, the LR-AKE protocol is the currently horn solution. In this paper, we prove its security of the LR-AKE protocol in the standard model. Our security analysis shows that the LR-AKE Protocol is provably secure under the assumptions that DDH (Decisional Diffie-Hellman) problem is hard and MACs are selectively unforgeable against partially chosen message attacks (which is a weaker notion than being existentially unforgeable against chosen message attacks).

EAP-AKA Authentication without UICC for Interworking Authentication in Heterogeneous Wireless Networks (이질적인 무선 네트워크 환경에서 인증 연동을 위한 비 UICC 방식의 EAP-AKA 인증)

  • Choi, Jae-Duck;Jung, Sou-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.168-177
    • /
    • 2009
  • This paper proposes the EAP-AKA scheme without UICC for extending its usage to existing WLAN/WiBro devices. To apply the current EAP-AKA scheme, the WLAN/WiBro devices require an external Universal Integrated Circuit Card (UICC) reader. If they don't use UICC due to cost overhead and architectural problem of device, the EAP-AKA scheme loses its own advantages in security and portability aspects. The proposed scheme uses the DH key algorithm and a password for non-UICC devices instead of using the long-term key stored in UICC. The main contribution is to maintain the security and portability of the EAP-AKA while being applied to non-3GPP network devices not equipped with UICC. Furthermore, it does not require major modifications of authentication architecture in 3GPP.