• Title/Summary/Keyword: Differential steering

Search Result 47, Processing Time 0.031 seconds

CONSIDERATIONS CONCERNING IMPROVEMENT OF EMERGENCY EVASION PERFORMANCE

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • When emergency evasion during running is required, a driver sometimes causes a vehicle to drift, that is, a condition in which the rear wheels skid due to rapid steering. Under such conditions, the vehicle enters a very unstable state and often becomes uncontrollable. An unstable state of the vehicle induced by rapid steering was simulated and the effect of differential steering assistance was examined. Results indicate that, in emergency evasion while cornering and during which the vehicle begins to drift, unstable behavior like spins can be avoided by differential steering assistance and both the stability and control of the vehicle is improved remarkably. In addition, reduction of overshoot during spin evasion by the differential steering assistance has been shown to enable the vehicle to return to a state of stability in a short time in emergency evasion during straight-line running. Moreover, the effectiveness of differential steering assistance during emergency evasion was confirmed using a driving simulator.

Simulation of Vehicle Steering Control through Differential Braking (차동 제동을 이용한 조향 제어 시뮬레이션)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

A Fusion Algorithm of Pure Pursuit and Velocity Planning to Improve the Path Following Performance of Differential Driven Robots in Unstructured Environments (차동 구동형 로봇의 비정형 환경 주행 경로 추종 성능 향상을 위한 Pure pursuit와 속도 계획의 융합 알고리즘)

  • Bongsang Kim;Kyuho Lee;Seungbeom Baek;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • In the path traveling of differential-drive robots, the steering controller plays an important role in determining the path-following performance. When a robot with a pure-pursuit algorithm is used to continuously drive a right-angled driving path in an unstructured environment without turning in place, the robot cannot accurately follow the right-angled path and stops driving due to the ground and motor load caused by turning. In the case of pure-pursuit, only the current robot position and the steering angle to the current target path point are generated, and the steering component does not reflect the speed plan, which requires improvement for precise path following. In this study, we propose a driving algorithm for differentially driven robots that enables precise path following by planning the driving speed using the radius of curvature and fusing the planned speed with the steering angle of the existing pure-pursuit controller, similar to the Model Predict Control control that reflects speed planning. When speed planning is applied, the robot slows down before entering a right-angle path and returns to the input speed when leaving the right-angle path. The pure-pursuit controller then fuses the steering angle calculated at each path point with the accelerated and decelerated velocity to achieve more precise following of the orthogonal path.

Controller for Single Line Tracking Autonomous Guidance Vehicle Using Machine Vision

  • Shin, Beom-Soo;Choi, Young-Dae;Ying, Yibin
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.47-53
    • /
    • 2005
  • AMachine vision is a promising tool for the autonomous guidance of farm machinery. Conventional CCD camera for the machine vision needs a desktop PC to install a frame grabber, however, a web camera is ready to use when plugged in the USB port. A web camera with a notebook PC can replace existing camera system. Autonomous steering control system of this research was intended to be used for combine harvester. If the web camera can recognize cut/uncut edge of crop, which will be the reference for steering control, then the position of the machine can be determined in terms of lateral offset and heading angle. In this research, a white line was used as a cut/uncut edge of crop for steering control. Image processing algorithm including capturing image in the web camera was developed to determine the desired travel path. An experimental vehicle was constructed to evaluate the system performance. Since the vehicle adopted differential drive steering mechanism, it is steered by the difference of rotation speed between left and right wheels. According to the position of vehicle, the steering algorithm was developed as well. Evaluation tests showed that the experimental vehicle could travel within an RMS error of 0.8cm along the desired path at the ground speed of $9\sim41cm/s$. Even when the vehicle started with initial offsets or tilted heading angle, it could move quickly to track the desired path after traveling $1.52\sim3.5m$. For turning section, i.e., the curved path with curvature of 3 m, the vehicle completed its turning securely.

  • PDF

Steering Control of Differential Brake System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차동 브레이크 시스템의 조향제어)

  • 윤여흥;제롬살랑선네;장봉춘;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.233-237
    • /
    • 2002
  • Vehicle Dynamics Control(VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC. In order to help the car to turn, a yaw moment can be achieved by altering the left/light and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since Fuzzy logic can consider the nonlinear effect of vehicle modeling, Fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

  • PDF

Elimination of Clock Jump Effects in Low-Quality Differential GPS Measurements

  • Kim, Hee-Sung;Lee, Hyung-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.626-635
    • /
    • 2012
  • Most of single frequency GPS receivers utilize low-quality crystal oscillators. If a lowquality crystal oscillator is utilized as the time reference of a GPS receiver, the receiver's clock bias grows very fast due to its inherent low precision and poor stability. To prevent the clock bias becoming too large, large clock jumps are intentionally injected to the clock bias and the time offset for clock steering purpose. The abrupt changes in the clock bias and the time offset, if not properly considered, induce serious accuracy degradation in relative differential positioning. To prevent the accuracy degradation, this paper proposes an efficient and systematic method to eliminate the undesirable clock jump effects. Experiment results based on real measurements verify the effectiveness of the propose method.

A Study on the Steering System of Electric Scooter

  • Park, Sung Cheon
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.219-225
    • /
    • 2022
  • Recently, the popularization of personal mobility(PM) has made it possible to see many electric scooters. The energy source of personal transportation used by the general public and the disabled can be seen as environmentally friendly as electricity. Personal transportation means are divided into small electric vehicles because they use electric energy, and they are being treated as new models by automobile manufacturers in each country and spurring development. On the other hand, personal transportation means may cause various types of traffic accidents as they travel between roads and a human walk. In order to prevent such accidents, it is judged that the enactment of laws on the establishment of specifications for electric scooters, which are personal transportation means, and the method of restricting road operation should be given priority. The electric scooter is basically different from the conventional vehicle. The steering shaft of the steering system applied to the electric scooter one to two is possible. 1 to 2 the front-wheel under the steering column is used. It is classified according to the number of wheel installed at the electric scooter is the vehicle body into 2 wheel - electric scooter, and 3 wheel - electric scooter and 4 wheel - electric scooter. In this study, we propose a steering shaft design model that can be applied to an electric scooter, one of personal transportation means. A design model for 1-shaft steering and 2-shafts steering that can be applied to electric scooters is proposed. In addition, we have produced the prototypes for the commercialization of the proposed models, and reviewed the pros and cons of the manufactured prototypes and models.

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.