• Title/Summary/Keyword: Differential scanning calorimetry (DSC)

Search Result 680, Processing Time 0.033 seconds

Physicochemical Properties of Starch Granules from Endosperm Mutants in Rice (배유돌연변이체 쌀전분의 이화학적 특성 비교)

  • Kang, Mi-Young;Han, Ji-Yeun;Nam, Seok-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.258-264
    • /
    • 2000
  • Starches from the eight varieties of rice were analyzed using scanning electron microscope(SEM), differential scanning calorimetry(DSC) and X-ray diffractometry, and tested on the starch-granule susceptibility to 15% $H_2SO_4$ and glucoamylase. The shape of starch granules from normal rice varieties and low-amylose mutants were polygonal while shrunken and floury mutants were globular. According to DSC, starches from Nampung CB243 showed higher onset temperature$(T_o)$, completion temperature$(T_c)$ and Punchilmi, Nampung EM90 showed higher enthalpy$({\triangle}H)$ of gelatinization than others. shr showed the highest hydrolysis rate to 15% $H_2SO_4$ while Nampung CB243 showed the lowest one. Eight varieties of rice starch granules showed A-type pattern on X-ray diffractograms. The lower amylose content rice varieties showed the higher hydrolysis rate treated with glucoamylase.

  • PDF

Preparation, Structural Investigation and Thermal Decomposition Behavior of Two High-Nitrogen Energetic Materials: ZTO·2H2O and ZTO(phen)·H2O

  • Ma, Cong;Huang, Jie;Zhong, Yi Tang;Xu, Kang Zhen;Song, Ji Rong;Zhang, Zhao
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2086-2092
    • /
    • 2013
  • Two new high-nitrogen energetic compounds $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ have been synthesized (where ZTO = 4,4-azo-1,2,4-triazol-5-one and phen = 1,10-phenanthroline). The crystal structure, elemental analysis and IR spectroscopy are presented. Compound 1 $ZTO{\cdot}2H_2O$ crystallizes in the orthorhombic crystal system with space group Pnna and compound 2 $ZTO(phen){\cdot}H_2O$ in the triclinic crystal system with space group P-1. In $ZTO(phen){\cdot}H_2O$, there is intermolecular hydrogen bonds between the -NH group of ZTO molecule (as donor) and N atom of phen molecule (as acceptor). Thermal decomposition process is studied by applying the differential scanning calorimetry (DSC) and thermo thermogravimetric differential analysis (TG-DTG). The DSC curve shows that there is one exothermic peak in $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$, respectively. The critical temperature of thermal explosion ($T_b$) for $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ is $282.21^{\circ}C$ and $195.94^{\circ}C$, respectively.

Effect of the Cooking Condition on Enzyme-resistant Starch Content and in vitro Starch and Protein Digestibility of Tarakjuk (Milk-rice Porridge) (타락죽의 효소저항전분 함량과 in vitro 전분 및 단백질 분해율에 대한 가열조건의 영향)

  • Lee, Gui-Chu;Lim, Seung-Taik;Yoon, Hyun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.765-772
    • /
    • 2004
  • Cooking condition of Tarakjuk (milk-rice porridge) was established based on gelatinization temperature using differential scanning calorimetry (DSC) of roasted Ilpum rice flour, which has highest enzyme-resistant starch (RS) content. Effect of cooking temperature and time on DSC characteristics, crystallity with X ray diffractogram, RS content, in vitro starch digestibility (IVSD), amino acid composition, and in vitro protein digestibility (IVPD) of Tarakjuk were determined. Tarakjuk was cooked at 50, 56.5, 64, and $69^{\circ}C$ for various durations. Rice flour ingredient used was Ilpum, previously roasted at $185^{\circ}C$ for 25 min. Tarakjuk cooked at 50 and $56.5^{\circ}C$ showed two thermal transitions between $63.7-125.2^{\circ}C$ as determined by DSC, corresponding to endotherms of starch gelatinization $(63.7-73.8^{\circ}C)$ and melting of amylose-lipid complex (AM-lipid complex, $97.7-125.2^{\circ}C$), whereas that cooked at 64 and $69^{\circ}C$ showed only AM-lipid complex melting transition between $96.9-127.6^{\circ}C$. As cooking temperature increased, RS content of Tarakjuk decreased, whereas IVSD increased. Total amino acid content was between 11,558-15,601mg/100g, depending on cooking condition used. Compared with conventionally made control, contents of essential amino acids, such as lysine and tryptophane, were higher at 50 and $56.5^{\circ}C$, and IVPD showed higher increase. Results reveal degree of gelatinization in Tarakjuk with high RS content as well as low IVSD and high IVPD, which are important from physiological and nutritional point of view, can be produced by controlling cooking condition.

Comparison of Cooking Properties between the Functionally Fortified and Regular Rices using Electric and Pressure Cookers (전기솥과 압력솥을 이용한 기능성 강화쌀과 일반쌀의 취반 특성 연구)

  • Kim, Gee-Yeoun;Lee, In-Seon;L.Kim, Hye-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.3
    • /
    • pp.359-368
    • /
    • 2004
  • The Physicochemical, sensory and cooking properties of functionally fortified rice with dietary fiber and chitosan were compared with regular rice when the rices were cooked with pressure and electric cookers. Moisture content of functional rice before cooking was 11.11%, which was lower than 13.72% in regular rice. Accordingly, moisture contents of functional rice samples cooked both with pressure and electric cookers were lower than those of regular rice. L value showing the degree of lightness of cooked rice was significantly higher in rice samples cooked with pressure cookers. The ${\alpha}$ value, the degree of redness and the b value, the degree of yellowness, were the highest in the functional rice cooked with an electric rice cookers. Textural measurement of hardness using a rheometer showed the highest value in functional rice cooked with a pressure cooker. The degree of gelatinization measured using differential scanning calorimetry (DSC) before cooking showed higher onset gelatinization temperature ($T_0$) and peak gelatinization temperature ($T_p$) in functional rice compared with those in regular rice. The gelatinization enthalpy (${\Delta}H$) of functional rice was lower than that of regular rice, showing that functional foe had lower gelatinization energy compared with regular rice. When the samples were stored in a refrigerator for one week, the DSC showed faster retrogradation degrees in samples cooked with electric rice cooker, having significantly higher enthalpies of regular and functional rice cooked with electric cooked compared to those cooked with pressure cookers. The functional rice samples cooked with pressure cooker had higher consumer acceptance test values compared to those cooked with electric cookers.

Liquid Crystal Polymers (X). Synthesis and Properties of New Thermotropic Main Chain Copolyesters with Either Mixed Polymethylene Spacers or Mixed Mesogenic Units (액정 중합체 (제10보). 혼합폴리에틸렌 격자나 메소젠 단위를 갖고 있는 새로운 주사슬 혼성폴리에스테르의 합성 및 성질)

  • Jung-Il Jin;Robert W. Lenz;S. Antoun
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.188-193
    • /
    • 1982
  • Four new thermotropic copolyesters were prepared and their liquid crystal properties were investigated by differential scanning calorimetry and on a hot-stage of a polarizing microscope. Three copolyesters had same mesogenic unit, triad aromatic ester structure, interconnected through a random combination of either odd-even, or odd-odd, or even-even number of methylene groups in the polymethylene flexible spacers. Another random copolyester consisted of mesogenic units of 1 : 1 mixture of central methyl-and bromohydroquinone moieties with two flanking p-oxybenzoate units connected by decamethylene spacer. All of the polyesters formed nematic liquid crystal phase upon melting. The transitions for melting and nematic ${\to}$ isotropic transformations could be reversibly observed by DSC as well as by microscopic study. The thermodynamic properties for their liquid crystal ${\to}$ isotropic phase transitions were discussed in relation to their chemical structures.

  • PDF

Improvement of Solubility and Dissolution of Ketoconazole by Inclusion with Cyclodextrin (시클로덱스트린과의 포접에 의한 케토코나졸의 용해성 및 용출 증가)

  • Park, Gee-Bae;Ann, Hong-Jik;Chang, Young-Soo;Seo, Bo-Youn;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • Inclusion complexes of ketoconazole (KT) with ${\alpha}-$, ${\beta}-cyclodextrin$ (CD) and dimethyl-${\beta}-cyclodextrin$ $(DM{\beta}CD)$ in a molar ratio of 1:2 were prepared by freeze-drying and solvent evaporation methods. The interactions of KT with ${\alpha}-CD$, ${\beta}-CD$ and $DM{\beta}CD$ in aqueous solution and in solid state were investigated by solubility study, infrared (lR) spectroscopy and differential scanning calorimetry (DSC). The stability constant of $KT-DM{\beta}CD$ inclusion complex (lC) was found to be the largest among three inclusion complexes. Clear differences in IR spectra and DSC curves were observed between inclusion complexes and physical mixtures (PM) of KT-CDs. It was also shown by IR spectra and DSC curves that solvent evaporation method might be. superior to the freeze-drying method in preparing the inclusion complexes of KT-CDs. The dissolution rate of KT was markedly increased by inclusion complex formation with CDs in the buffer solution at pH 4.0 and pH 6.8. The mean dissolution time (MDT,min), which represents the rapidity of dissolution, was in the order of $KT-DM{\beta}CD$ IC (3.20) < $KT-{\beta}-CD$ IC (4.36) < $KT-{\alpha}-CD$ IC (6.99) < $KT-{\alpha}-CD$ PM (17.46)< $KT-{\beta}-CD$ PM (19.36) < $KT-{\beta}-CD$ PM (28.53). The dissolution rates of KT-CD ICsprepared by solvent evaporation method were faster than those of KT-CD ICs prepared by freeze-drying method.

  • PDF

Synthesis and Characterization of New Main Chain Liquid Crystalline Coumarin Compound with Ester Moiety (Ester기를 갖는 새로운 주쇄형 액정 coumarin 화합물의 합성 및 특성분석)

  • Lee, Jong-Back;Kang, Byung-Chul;Lee, Gang-Choon;Lee, Dong-Jin;Hideyuki, Kihara
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • 4-(6-bromohexyloxy)benzoic acid was synthesized from benzyl 4-Hydroxybenzoate and 1,6-dibromohexane. It was reacted with hydroquinone to obtain a new mesogenic ester having an bromine group. One kind of new photoresponsive coumarin compound was prepared by the reaction of mesogenic ester with coumarin sensitive to the ultraviolet. Structures of the compound were identified by FT-IR and $^1H$-NMR spectroscopies. Their phase transition temperatures and thermal stability were also investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and x-ray diffraction analysis. From optical polarizing microscopy, the prepared compound was found to show enantiotropic liquid crystallinity with smectic and nematic textures.

Lyotropic Behaviors of a Phospholipid-based Lamella Liquid Crystalline Phase Hydrated by Propylene Glycol as a Polar Solvent: Correlation of DSPC vs PG Concentration

  • Jeong, Tae-Hwa;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2007
  • The lyotropic behaviors to form the structure of distearoylphosphatidylcholine (DSPC)-based liquid crystal (LC) hydrated by only propylene glycol (PG) without water were examined by differential scanning calorimetry (DSC), X-ray diffractions (XRD), polarized microscope (PM) and transmission electron microscope (TEM). By increasing the amount of PG instead of water, it showed the phase transition to be gradually changed from anisotropic structures to other structures more close to isotropic ones and their appearance to be changed from solid-like states to liquid-like ones with more fluidity. Below 50% w/w PG, the mixtures of DSPC and PG resulted in no direct observation of LC structure through PM because they were very close to solid-states. From 55% w/w to 90% w/w of PG, the dense lamella crystalline structures were observed through PM, and their thickness and area decreased as the content of PG increased. Measured by DSC with heating process, the main phase transition from α -lamella phase to isotropic phase appeared from 52.89 °C to 47.41 °C to show linearly decreasing behaviors because PG affects the hydrophobic region of DSPC-based lamella phase. The repeating distance of the lamella phase and the interlayer distance between bilayers were calculated with XRDs and the average number of bilayers related to the thickness in LC structure was approximately estimated by combining with TEM results. The WAXS and DSC measurements showed that all of PG molecules contributed to swelling both the lipid layer in the edge region of lamella phase close to phosphate groups and the interlayer between bilayers below 90% w/w of PG. The phase and thermal behaviors were found to depend on the amount of PG used by means of dissolving DSPC as a phospholipid and rearranging its structure. Instead of water, the inducement of PG as a polar solvent in solid-lamella phase is discussed in terms of the swelling effect of PG for DSPC-based lamella membrane.

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Influence of the Ceramide(III) and Cholesterol on the Structure of a Non-hydrous Phospholipid-based Lamellar Liquid Crystal : Structural and Thermal Transition Behaviors

  • Jeong, Tae-Hwa;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1021-1030
    • /
    • 2007
  • The effects of the creamide III (CER3) and cholesterol (CHOL) on the structure of a non-hydrous distearoyl phosphatidylcholine (DSPC)-based lamellar liquid crystal (LC) hydrated by only propylene glycol (PG) without water were investigated by differential scanning calorimetry (DSC), X-ray diffractions (XRDs), and polarized microscope (PM). As soon as CER3 was incorporated into the lamellar phase, the characteristic LPP was appeared as well as the characteristic SPP, and the formation of separated CER3 crystalline phase was observed depending upon the increase of CER3 content by XRDs. Also, by DSC, it was shown that the increase of CER3 made the monotectic thermal transition be changed to the eutectic thermal transition which indicates the formation of separated CER3 crystalline phases and the main transition temperatures (Tc1) to be gradually decreased and the enthalpy change (ΔH) to be linearly increased. Incorporating CHOL, the formation of LPP and SPP showed almost similar behaviors to CER3, but incorporating small amounts of CHOL showed the characteristic peaks of CHOL which meant the existence of crystalline CHOL phase due to the immiscibility of CHOL with DSPC swollen by PG differently from CER3, and increasing CHOL made the intensity of the 1st order diffraction for LPP weakened as well as the intensities of the characteristic diffractions for DSPC. Also, in the results of DSC, it showed more complex thermal behaviors having several Tc than CER3 due to its bulky chemical structure. In the present study, the inducement of CER3 and CHOL as other lipids present in human stratum corneum (SC) into a non-hydrous lamellar phase is discussed in terms of the influence on their structural and thermal transition.