• Title/Summary/Keyword: Differential gene expression profile

Search Result 40, Processing Time 0.026 seconds

Profiling of Gene Expression in Human Keratinocyte Cell Line Exposed to Quantum Dot Nanoparticles

  • Kim, In-Kyoung;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Jeong, Sang-Hoon;Son, Sang-Wook;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Quantum Dot (QD) nanoparticles are used in various industrial applications, such as diagnostic, drug delivery, and imaging agents of biomedicine. Although QDs are extensively used in many medical science, several studies have been demonstrated the potential toxicity of nanoparticles. The first objective of this study was to investigate the nanotoxicity of QDs in the HaCaT human keratinocyte cell line by focusing on gene expression pattern. In order to evaluate the effect of QDs on gene expression profile in HaCaT cells, we analyzed the differential genes which related to oxidative stress and antioxidant defense mechanisms by using human cDNA microarray and PCR array. A human cDNA microarray was clone set, which was sorted for a list of genes correlated with cell mechanisms. We tried to confirm results of cDNA microarray by using PCR array, which is pathway-focused gene expression profiling technology using Real-Time PCR. Although we could not find the exactly same genes in both methods, we have screened the effects of QDs on global gene expression profiles in human skin cells. In addition, our results show that QD treatment somehow regulates cellular pathways of oxidative stress and antioxidant defense mechanisms. Therefore, we suggest that this study can enlarge our knowledge of the transcriptional profile and identify new candidate biomarker genes to evaluate the toxicity of nanotoxicology.

Screening of Differentially Expressed Genes among Various TNM Stages of Lung Adenocarcinoma by Genomewide Gene Expression Profile Analysis

  • Liu, Ming;Pan, Hong;Zhang, Feng;Zhang, Yong-Biao;Zhang, Yang;Xia, Han;Zhu, Jing;Fu, Wei-Ling;Zhang, Xiao-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6281-6286
    • /
    • 2013
  • Background: To further investigate the molecular basis of lung cancer development, we utilize a microarray to identify differentially expressed genes associated with various TNM stages of adenocarcinoma, a subtype with increasing incidence in recent years in China. Methods: A 35K oligo gene array, covering about 25,100 genes, was used to screen differentially expressed genes among 90 tumor samples of lung adenocarcinoma in various TNM stages. To verify the gene array data, three genes (Zimp7, GINS2 and NAG-1) were confirmed by real-time RT-PCR in a different set of samples from the gene array. Results: First, we obtained 640 differentially expressed genes in lung adenocarcinomas compared to the surrounding normal lung tissues. Then, from the 640 candidates we identified 10 differentially expressed genes among different TNM stages (Stage I, II and IIIA), of which Zimp7, GINS2 and NAG-1 genes were first reported to be present at a high level in lung adenocarcinoma. The results of qRT-PCR for the three genes were consistent with those from the gene array. Conclusions: We identified 10 candidate genes associated with different TNM stages in lung adenocarcinoma in the Chinese population, which should provide new insights into the molecular basis underlying the development of lung adenocarcinoma and may offer new targets for the diagnosis, therapy and prognosis prediction.

Differentially Expressed Gene Profile of Acanthamoeba castellanii Induced by an Endosymbiont Legionella pneumophila

  • Moon, Eun-Kyung;Park, So-Min;Chu, Ki-Back;Quan, Fu-Shi;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.67-76
    • /
    • 2021
  • Legionella pneumophila is an opportunistic pathogen that survives and proliferates within protists such as Acanthamoeba spp. in environment. However, intracellular pathogenic endosymbiosis and its implications within Acanthamoeba spp. remain poorly understood. In this study, RNA sequencing analysis was used to investigate transcriptional changes in A. castellanii in response to L. pneumophila infection. Based on RNA sequencing data, we identified 1,211 upregulated genes and 1,131 downregulated genes in A. castellanii infected with L. pneumophila for 12 hr. After 24 hr, 1,321 upregulated genes and 1,379 downregulated genes were identified. Gene ontology (GO) analysis revealed that L. pneumophila endosymbiosis enhanced hydrolase activity, catalytic activity, and DNA binding while reducing oxidoreductase activity in the molecular function (MF) domain. In particular, multiple genes associated with the GO term 'integral component of membrane' were downregulated during endosymbiosis. The endosymbiont also induced differential expression of various methyltransferases and acetyltransferases in A. castellanii. Findings herein are may significantly contribute to understanding endosymbiosis of L. pneumophila within A. castellanii.

Differentially Expressed Genes under Cold Acclimation in Physcomitrella patens

  • Sun, Ming-Ming;Li, Lin-Hui;Xie, Hua;Ma, Rong-Cai;He, Yi-Kun
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.986-1001
    • /
    • 2007
  • Cold acclimation improves freezing tolerance in plants. In higher plants, many advances have been made toward identifying the signaling and regulatory pathways that direct the low-temperature stress response; however, similar insights have not yet been gained for simple nonvascular plants, such as bryophytes. To elucidate the pathways that regulate cold acclimation in bryophytes, we used two PCR-based differential screening techniques, cDNA amplified fragment length polymorphism (cDNA-AFLP) and suppression subtractive hybridization (SSH), to isolate 510 ESTs that are differentially expressed during cold acclimation in Physcomitrella patens. We used realtime RT-PCR to further analyze expression of 29 of these transcripts during cold acclimation. Our results show that cold acclimation in the bryophyte Physcomitrella patens is not only largely similar to higher plants but also displays distinct differences, suggests significant alteration during the evolution of land plants.

Paradigm of Time-sequence Development of the Intestine of Suckling Piglets with Microarray

  • Sun, Yunzi;Yu, Bing;Zhang, Keying;Chen, Xijian;Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1481-1492
    • /
    • 2012
  • The interaction of the genes involved in intestinal development is the molecular basis of the regulatory mechanisms of intestinal development. The objective of this study was to identify the significant pathways and key genes that regulate intestinal development in Landrace piglets, and elucidate their rules of operation. The differential expression of genes related to intestinal development during suckling time was investigated using a porcine genome array. Time sequence profiles were analyzed for the differentially expressed genes to obtain significant expression profiles. Subsequently, the most significant profiles were assayed using Gene Ontology categories, pathway analysis, network analysis, and analysis of gene co-expression to unveil the main biological processes, the significant pathways, and the effective genes, respectively. In addition, quantitative real-time PCR was carried out to verify the reliability of the results of the analysis of the array. The results showed that more than 8000 differential expression transcripts were identified using microarray technology. Among the 30 significant obtained model profiles, profiles 66 and 13 were the most significant. Analysis of profiles 66 and 13 indicated that they were mainly involved in immunity, metabolism, and cell division or proliferation. Among the most effective genes in these two profiles, CN161469, which is similar to methylcrotonoyl-Coenzyme A carboxylase 2 (beta), and U89949.1, which encodes a folate binding protein, had a crucial influence on the co-expression network.

Analysis of Gene Expression Responses to a Salmonella Infection in Rugao Chicken Intestine Using GeneChips

  • Luan, D.Q.;Chang, G.B.;Sheng, Z.W.;Zhang, Y.;Zhou, W.;Li, Z.Z.;Liu, Y.;Chen, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.278-285
    • /
    • 2012
  • Poultry products are an important source of Salmonella enterica. An effective way to reduce food poisoning due to Salmonella would be to breed chickens more resistant to infection. Unfortunately host responses to Salmonella are complex with many factors involved. To learn more about responses to Salmonella in young chickens of 2 wk old, a cDNA Microarray containing 13,319 probes was performed to compare gene expression profiles between two chicken groups under control and Salmonella infected conditions. Newly hatched chickens were orally infected with S. enterica serovar Enteritidis. Since the intestine is one of the important barriers the bacteria encounter after oral inoculation, intestine gene expression was investigated at 2 wk old. There were 588 differentially expressed genes detected, of which 276 were known genes, and of the total number 266 were up-regulated and 322 were down-regulated. Differences in gene expression between the two chicken groups were found in control as well as Salmonella infected conditions indicating a difference in the intestine development between the two chicken groups which might be linked to the difference in Salmonella susceptibility. The differential expressions of 4 genes were confirmed by quantitative real-time PCR and the results indicated that the expression changes of these genes were generally consistent with the results of GeneChips. The findings in this study have lead to the identification of novel genes and possible cellular pathways, which are host dependent.

Comparison of Expression Profiles between Trophozoite and Cyst of Acanthamoeba castellanii

  • Moon, Eun-Kyung;Kong, Hyun-Hee
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • Acanthamoeba is an opportunistic pathogen known to cause granulomatous amoebic encephalitis and amebic keratitis. Acanthamoeba exhibits life cycle consisting of trophozoite and cyst, and the cyst is highly resistant to variable antibiotics and therapeutic agents. To understand the encystation mechanism of Acanthamoeba, the expression profiles of trophozoite and cyst were compared by gene ontology (GO) analysis. Ribosomal proteins and cytoskeletal proteins were highly expressed in trophozoite. In cyst, various protease, and signal transduction - and protein turnover - related proteins were highly expressed. These results correlated with eukaryotic orthologous groups (KOG) assignment and microarray analysis of Acanthamoeba trophozoite and cyst ESTs. The information of differential expression profiles of trophozoite and cyst would provide important clues for research on encystation mechanism of cyst forming protozoa including Acanthamoeba.

MicroRNA Expression Profile Analysis Reveals Diagnostic Biomarker for Human Prostate Cancer

  • Liu, Dong-Fu;Wu, Ji-Tao;Wang, Jian-Ming;Liu, Qing-Zuo;Gao, Zhen-Li;Liu, Yun-Xiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3313-3317
    • /
    • 2012
  • Prostate cancer is a highly prevalent disease in older men of the western world. MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression via posttranscriptional inhibition of protein synthesis. To identify the diagnostic potential of miRNAs in prostate cancer, we downloaded the miRNA expression profile of prostate cancer from the GEO database and analysed the differentially expressed miRNAs (DE-miRNAs) in prostate cancerous tissue compared to non-cancerous tissue. Then, the targets of these DE-miRNAs were extracted from the database and mapped to the STRING and KEGG databases for network construction and pathway enrichment analysis. We identified a total of 16 miRNAs that showed a significant differential expression in cancer samples. A total of 9 target genes corresponding to 3 DE-miRNAs were obtained. After network and pathway enrichment analysis, we finally demonstrated that miR-20 appears to play an important role in the regulation of prostate cancer onset. MiR-20 as single biomarker or in combination could be useful in the diagnosis of prostate cancer. We anticipate our study could provide the groundwork for further experiments.

DNA Array Analysis of Changes in Gene Expression Profile in DHEA-induced PCO

  • Yu, Jeong-Min;Yoo, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young, Kim, Jee-Yun;Kang, Sung-Goo
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.112-112
    • /
    • 2002
  • Under normal conditions, women produce a single dominant follicle that participates in a single ovuation each menstrual cycle. But Polycystic ovary syndrome(PCOS) conditions, folliculogenesis does not proceed normally. This condition leads to the accumlation of large numbers of small graffian follicles in which the theca interstitial cells (TIC) produce abnormally large amounts of androgen. PCOS is probably the most common endocrine disorder, affecting women of reprodutive age with 5-10% prevalence estimate. Chronic anovulation, hyperandrogenism, hirsutism, obesity, infertility and polycystic ovaries are clinical hallmarks of women with PCOS. Its etiology remains unknown. To investigate the gene expression pattern of ovary in PCO-induced rat, we used cDNA expression analysis. Total RNA was extracted from the ovary of PCO-induced rat and reverse-transcribed in the presence of[$\alpha$$^{32}$P]-dATP Which were hybridized to Atlas$^{TM}$ Rat Toxicology 1.2 array (Clontech) representing approximately 1176 rat genes. We compared gene expression between ovary of pco-induced immature female rats and control. Differential gene expression profiles were revealed (LIFR-alpha, ADRA1A, Heat shock 90-kDa protein A, PDGFRA). Reverse transcription-polymerase chain reaction(RT-PCR) was used to validate the relative expression pattern obtained by the cDNA array. The precise relationship between the altered expression of genes and PCO is a matter of further investigation. This study was supported by Korea Science and Engineering Foundation(KOSEF)

  • PDF

Gene Expression Profile of T-cell Receptors in the Synovium, Peripheral Blood, and Thymus during the Initial Phase of Collagen-induced Arthritis

  • Kim, Ji-Young;Lim, Mi-Kyoung;Sheen, Dong-Hyuk;Kim, Chan;Lee, So-Young;Park, Hyo;Lee, Min-Ji;Lee, Sang-Kwang;Yang, Yun-Sik;Shim, Seung-Cheol
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.258-267
    • /
    • 2011
  • Background: Current management strategies attempt to diagnose rheumatoid arthritis (RA) at an early stage. Transcription profiling is applied in the search for biomarkers for detecting early-stage disease. Even though gene profiling has been reported using several animal models of RA, most studies were performed after the development of active arthritis, and conducted only on the peripheral blood and joint. Therefore, we investigated gene expression during the initial phase of collagen-induced arthritis (CIA) before the arthritic features developed in the thymus in addition to the peripheral blood and synovium. Methods: For gene expression analysis using cDNA microarray technology, samples of thymus, blood, and synovium were collected from CIA, rats immunized only with type II collagen (Cll), rats immunized only with adjuvant, and unimmunized rats on days 4 and 9 after the first immunization. Arrays were scanned with an Illumina bead array. Results: Of the 21,910 genes in the array, 1,243 genes were differentially expressed at least 2-fold change in various organs of CIA compared to controls. Among the 1,243 genes, 8 encode T-cell receptors (TCRs), including CD3${\zeta}$, CD3${\delta}$, CD3${\varepsilon}$, CD8${\alpha}$, and CD8${\beta}$ genes, which were down-regulated in CIA. The synovium was the organ in which the genes were differentially expressed between CIA and control group, and no difference were found in the thymus and blood. Further, we determined that the differential expression was affected by adjuvant more than Cll. The differential expression of genes as revealed by real-time RT-PCR, was in agreement with the microarray data. Conclusion: This study provides evidence that the genes encoding TCRs including CD3${\zeta}$, CD3${\delta}$, CD3${\varepsilon}$, CD8${\alpha}$, and CD8${\beta}$ genes were down-regulated during the initial phase of CIA in the synovium of CIA. In addition, adjuvant played a greater role in the down-regulation of the CD3 complex compared to CII. Therefore, the down-regulation of TCR gene expression occurred dominantly by adjuvant could be involved in the pathogenesis of the early stage at CIA.