• Title/Summary/Keyword: Differential gear unit

Search Result 24, Processing Time 0.026 seconds

The Study on Configurations and Interferences of differential gear unit for Light Rail Transit (경량전철용 차동기어장치의 구성 및 간섭에 관한 연구)

  • 김연수;박성혁;이우동;정종덕;한석윤
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.99-106
    • /
    • 1999
  • Because many light rail transit systems are mainly operated in the downtown areas of a large cities and the congestion areas, there are many steep gradients and sharp radius sections in that lines. As that reasons above, light rail vehicles are equipped with differential gear units between traction motors and final reduction gear units. In this paper, the configurations and the interferences of 2K-H I type Planetary gear train, which is applicable for light rail vehicles and based on various differential gear units, are studied. The ranges of addendum modification coefficients which would not lead to interferences is analyzed, and optimal addendum modification coefficients among these ranges are presented, which generate the maximum efficiency of planetary gear drives and differential gear unit as pressure angles, speed ratios,

  • PDF

Interference and Efficiency analysis of 2K-H I Type Differential Gear Unit

  • Kim, Yeon-Su;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2000
  • In the design of epicyclic gearing, the analysis of interference and mechanical efficiency is an important index. As an applied way, epicyclic gearing can be used for planetary gear drive and differential gear unit. In case that one of its components is fixed with intend, it is called planetary gear drive. On the contrary, in case that no component is fixed, it is called differential gear unit. In this paper, various design constraints and interferences are defined for 2K-H I type epicyclic gearing which is a basic arrangement of diverse epicyclic gearings. And various interferences are analyzed, and mechanical efficiency is calculated in case that 2K-H I epicyclic gearing is used for a differential gear unit as the change of gear ratio, cutter pressure angle, addendum modification coefficient. As that results, trend of mechanical efficiency is investigated in the ranges of addendum modification coefficients which would not lead to interferences, and the optimal range of addendum modification coefficient which can generate the maximum mechanical efficiency are presented. In order to prove results of theoretical efficiency analysis, experimental studies are performed.

  • PDF

Characteristics on the Output Coupled Type CVT Combined Differential Gear Unit (차동기어장치를 적용한 출력축 연결방식 무단변속기의 특성해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Yeon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2001
  • Continuously variable transmission(CVT) mechanisms considered here combine the functions of a 2K-H I type differential gear unit and a V-belt continuously variable unit(CVU). One shaft of the V-belt CVU is connected directly to the differential gear unit and remaining shaft of it is linked to the output shaft. These mechanisms have many advantage which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral. In this paper six different mechanisms of output coupled type CVT are proposed. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed, and theoretical analysis are proven by various experiments.

  • PDF

Power Flow and Efficiency of Input Coupled type CVT combined Differential Gear Unit (차동기어장치를 적용한 입력축 연결방식 무단변속기의 동력흐름 및 효율해석에 관한 연구)

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.141-150
    • /
    • 2000
  • Continuously variable transmission(CVT) combined differential gear unit has many advantages, which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral. It is known that such CVT can be classified into the input coupled type and the output coupled type according to the coupling location of continuously variable unit(CVU). In this paper, six different configurations of input coupled type CVT combined V-belt CVU and 2K-H I type differential gear unit are proposed. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed. The propriety of derived formula and theoretical analysis are proven by various experiments.

  • PDF

Experimental Study on the Input Coupled type CVT combined a Differential Gear and V-Belt type CVU

  • Kim, Yeon-Su;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.43-55
    • /
    • 2001
  • A continuously variable transmission(CVT) mechanism composed of one differential gear unit and one continuously variable unit(CVU) can be classified according to the coupling of CVU and the direction of power flows. The mechanism has many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range and generation of geared neutral. The CVT mechanism considered here is the input coupled type which combines the functions of a 2K-H I type differential gear unit and a V-belt type CVU. One shaft of the CVU is connected directly to the input shaft and another shaft of it is linked to the differential gear unit. It is shown that some fundamental relations(speed ratios, power flows and efficiencies) for twelve mechanisms previously described are valid by various experimental studies, six of them produce a power circulation and the others produce a power split. Some useful comparisons between theoretical analysis and experimental results are presented. General properties also are discussed, which connect following power flow modes : (a) power circulation mode; (b) power split mode.

  • PDF

Development of CVTs Composed of a 2K-H I Type Differential Gear Unit and a V-belt Drive (2K-H형 I 형식 차동기어장치와 V-belt 전동장치를 결합한 무단변속기의 개발)

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1060-1068
    • /
    • 2002
  • Compound continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdrive mode. They are composed of a 2K-H I type differential gear unit, a V-belt type continuously variable unit(CVU), a few friction clutches and gears, and not required of a starting device as a torque converter. Compound CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and efficiency are executed and proven by experimental studies.

Design of CVT Composed of a K-H-V type Differential Gear Unit and a V-Belt Drive (K-H-V형 차동기어장치와 V-벨트식 기구를 결합한 무단변속기의 설계)

  • 김연수;박재민;정찬길;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.799-802
    • /
    • 2002
  • Continuously variable transmission(CVT) mechanisms considered here combine the functions of a K-H-V type differential gear unit and a V-belt type continuously variable unit(CVU). As combining the functions of a K-H-V type differential gear unit and a V-belt type CVU, 24 different mechanisms are presented. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed. These mechanisms have many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral.

  • PDF

Performance of CVTs Composed of a Differential Gear Unit and a V-belt Drive (차동기어장치와 V-벨트식 변속기구를 결합한 무단변속기의 성능)

  • 최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.199-208
    • /
    • 2003
  • Continuously variable transmission (CVT) mechanisms considered here combine the functions of a K-H-V type differential gear unit and a V-belt type continuously variable unit (CVU). As combining the functions of a K-H-V type differential gear unit and a V-belt type CVU, 24 different mechanisms are presented. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed. These mechanisms have many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral.

Durability Performance Analysis of a Differential Gear for a Low Speed Vehicles (저속차량 차동장치의 내구성능 해석)

  • Cheon, Jong-Pil;Pyoun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.897-902
    • /
    • 2012
  • Low speed vehicle(LSV), golf carts have unique requirements to differential gear design. For double axle torque LSV differential loading conditions were determined with the help of analytical model and ANSYS finite element analysis. With stress safety factor 3.15, fatigue safety factor 1.08 and fatigue life 106 cycle ring gear teeth strength analysis is performed and structure design optimized. This allows reducing overall cost of differential unit.

Performance Analysis of CVTs with a 2K-H II Differential Gear (2K-HII차동기어 결합형 무단변속기의 성능해석)

  • 박재민;김연수;최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.170-178
    • /
    • 2004
  • Continuously variable transmission (CVT) mechanisms considered here are input coupled types that combine the functions of a 2K-H II type differential gear and a V-belt type continuously variable unit (CVU). For the 8 different mechanisms, 4 of them are power-circulation modes while the other 4 are power-split modes, various performance analysis (speed ratios, power flows, divisions of power transmission in a differential gear and a CVU, and theoretical efficiencies) are performed to vary design parameters. Experimental studies are executed to validate fundamental relations (speed ratios, power flows, efficiencies, occurrence of geared neutral). Some useful characteristics associated with performance also are discussed in the mechanisms.