• Title/Summary/Keyword: Differential analysis

Search Result 4,454, Processing Time 0.032 seconds

The Effect of Series Center on the Convergence of the Solution in Vibration Analysis by Differential Transformation Method(DTM) (미분변환법에 의한 진동 해석시 급수중심이 해의 수렴에 미치는 영향)

  • Shin, Young-Jae;Yun, Jong-Hak;Yoo, Yeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.231-236
    • /
    • 2007
  • This paper presents the effect of the center of the series on convergence in solving vibration problems by Differential Transformation Method(DTM) to the transverse vibration of the Euler-Bernoulli beam under varying axial force. The governing differential equation of the transverse vibration of the Euler-Bernoulli beam under varying axial force is derived. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previously published results. The effect of the center of the series on convergence in solving the problem by DTM is discussed.

Conceptualizing the Realistic Mathematics Education Approach in the Teaching and Learning of Ordinary Differential Equations

  • Kwon, Oh-Nam
    • Research in Mathematical Education
    • /
    • v.6 no.2
    • /
    • pp.159-170
    • /
    • 2002
  • The undergraduate curriculum in differential equations has undergone important changes in favor of the visual and numerical aspects of the course primarily because of recent technological advances. Yet, research findings that have analyzed students' thinking and understanding in a reformed setting are still lacking. This paper discusses an ongoing developmental research effort to adapt the instructional design perspective of Realistic Mathematics Education (RME) to the teaching and learning of differential equations at Ewha Womans University. The RME theory based on the design heuristic using context problems and modeling was developed for primary school mathematics. However, the analysis of this study indicates that a RME design for a differential equations course can be successfully adapted to the university level.

  • PDF

Differential Quadrature Analysis for Vibration of Wide-Flange Curved Beams (D.Q.M.을 이용한 I-단면 곡선보의 진동해석)

  • Ji-Won Han;Ki-Jun Kang
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.163-170
    • /
    • 1998
  • The differential quadrature method (D.Q.M.) is applied to computation of eigenvalues of small-amplitude free vibration for horizontally curved beams including a warping contribution. Fundamental frequencies are calculated for a single-span, curved, wide-flange beam with both ends simply supported or clamped, or simply supported-clamped end conditions. The results are compared with existing exact solutions and numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Power Flow and Efficiency of Input Coupled type CVT combined Differential Gear Unit (차동기어장치를 적용한 입력축 연결방식 무단변속기의 동력흐름 및 효율해석에 관한 연구)

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.141-150
    • /
    • 2000
  • Continuously variable transmission(CVT) combined differential gear unit has many advantages, which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral. It is known that such CVT can be classified into the input coupled type and the output coupled type according to the coupling location of continuously variable unit(CVU). In this paper, six different configurations of input coupled type CVT combined V-belt CVU and 2K-H I type differential gear unit are proposed. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed. The propriety of derived formula and theoretical analysis are proven by various experiments.

  • PDF

CAPUTO DELAYED FRACTIONAL DIFFERENTIAL EQUATIONS BY SADIK TRANSFORM

  • Awad T. Alabdala;Basim N. Abood;Saleh S. Redhwan;Soliman Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.439-448
    • /
    • 2023
  • In this article, we are interested in studying the fractional Sadik Transform and a combination of the method of steps that will be applied together to find accurate solutions or approximations to homogeneous and non-homogeneous delayed fractional differential equations with constant-coefficient and possible extension to time-dependent delays. The results show that the process is correct, exact, and easy to do for solving delayed fractional differential equations near the origin. Finally, we provide several examples to illustrate the applicability of this method.

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN OPERATOR

  • CHOUKRI DERBAZI;ABDELKRIM SALIM;HADDA HAMMOUCHE;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.21-36
    • /
    • 2024
  • In this paper, we study the existence of solutions for hybrid fractional differential equations with p-Laplacian operator involving fractional Caputo derivative of arbitrary order. This work can be seen as an extension of earlier research conducted on hybrid differential equations. Notably, the extension encompasses both the fractional aspect and the inclusion of the p-Laplacian operator. We build our analysis on a hybrid fixed point theorem originally established by Dhage. In addition, an example is provided to demonstrate the effectiveness of the main results.

CT Image Analysis of Hepatic Lesions Using CAD ; Fractal Texture Analysis

  • Hwang, Kyung-Hoon;Cheong, Ji-Wook;Lee, Jung-Chul;Lee, Hyung-Ji;Choi, Duck-Joo;Choe, Won-Sick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.326-327
    • /
    • 2007
  • We investigated whether the CT images of hepatic lesions could be analyzed by computer-aided diagnosis (CAD) tool. We retrospectively reanalyzed 14 liver CT images (10 hepatocellular cancers and 4 benign liver lesions; patients who presented with hepatic masses). The hepatic lesions on CT were segmented by rectangular ROI technique and the morphologic features were extracted and quantitated using fractal texture analysis. The contrast enhancement of hepatic lesions was also quantified and added to the differential diagnosis. The best discriminating function combining the textural features and the values of contrast enhancement of the lesions was created using linear discriminant analysis. Textural feature analysis showed moderate accuracy in the differential diagnosis of hepatic lesions, but statistically insignificant. Combining textural analysis and contrast enhancement value resulted in improved diagnostic accuracy, but further studies are needed.

  • PDF

Estimation of fire-temperature through instrumental analysis of Fire- Damaged Concrete (화재 입은 콘크리트의 기기분석을 통한 화재온도 추정)

  • Kim, Seong-Su;Park, Kwang-Pil;Nam, Ba-Reum;Yoo, Ju-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.913-916
    • /
    • 2006
  • In this study, we conducted machinery analysis, such as differential thermal analysis, X-ray diffraction analysis and scanning electron microscope analysis, in order to predict fire temperature and to analyze fire damage in the case of fire on concrete structure. according to the machinery analysis and differential thermal analysis, concrete bought big creak over $300^{\circ}C$. these result can be utilized as good data in design for repair and reinforcement through rationally evaluating fire damage on concrete structure exposed to high heat or fire in the future.

  • PDF

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.