• Title/Summary/Keyword: Differential Validity

Search Result 237, Processing Time 0.024 seconds

The Analysis of Life Cycle Cost and Cooling Water Circulating Pump Energy Saving According to Variable Speed Pressure Differential Setpoint Control Strategy

  • Kim, Seo-Hoon;Kim, Jong-Hun;Jang, Cheol-Yong;Song, Kyoo-dong
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.37-43
    • /
    • 2015
  • Purpose : The study applied control strategy to reduce through optimal control and operation of pump by applying control on variable speed to the circulation pump of HVAC system in the office building. The study has the purpose to review validity of control on variable speed as ESMs(Energy Saving Measures) and establish the control technology on variable speed pump. The study performed reduction analysis of building energy and economic evaluation of pump through energy effectiveness control strategy of HVAC system. Method: The study sought possible reduction through energy control strategy which can provide proper flow fitting to building load by applying control on variable speed pump. The study applied control strategy to reduce through pressure differential set-point control and operation of pump by applying control on variable speed to the circulation pump of HVAC system in the office building. Result : The results showed that about 16-35% of pump energy could be saved by using these optimal control strategies. In the result of analysis on 10 years life cycle cost of analysis on payback period of initial investment pump, variable speed pump control showed 5.1 years.

Free vibration analysis of a rotating non-uniform functionally graded beam

  • Ebrahimi, Farzad;Dashti, Samaneh
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1279-1298
    • /
    • 2015
  • In this paper, free vibration characteristics of a rotating double tapered functionally graded beam is investigated. Material properties of the beam vary continuously through thickness direction according to the power-law distribution of the volume fraction of the constituents. The governing differential equations of motion are derived using the Hamilton's principle and solved utilizing an efficient and semi-analytical technique called the Differential Transform Method (DTM). Several important aspects such as taper ratios, rotational speed, hub radius, as well as the material volume fraction index which have impacts on natural frequencies of such beams are investigated and discussed in detail. Numerical results are tabulated in several tables and figures. In order to demonstrate the validity and accuracy of the current analysis, some of present results are compared with previous results in the literature and an excellent agreement is observed. It is showed that the natural frequencies of an FG rotating double tapered beam can be obtained with high accuracy by using DTM. It is also observed that nondimensional rotational speed, height taper ratio, power-law exponent significantly affect the natural frequencies of the FG double tapered beam while the effects of hub radius and breadth taper ratio are negligible.

A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks (신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

Bidirectional Flyback Converter Design Methodology for Differential Power Processing Modules in PV Applications (PV 시스템의 차동 전력 조절기 모듈용 양방향 플라이백 컨버터 설계 방법)

  • Park, Seungbin;Kim, Mina;Jeong, Hoejeong;Kim, Taewon;Kim, Katherine A.;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • A bidirectional flyback converter is a suitable topology for use in a PV-to-bus differential power processing (DPP) module for PV applications due to its electrical isolation capability, bidirectional power transfer, high step-up ratio, and simple circuit structure. However, the bidirectional flyback converter design should consider the effect of the output-side power switch utilized for bidirectional operation compared with that of the conventional flyback converter. This study presents the structure and design methodology of the bidirectional flyback converter for a PV DPP module. Magnetizing inductance is designed by calculating the power loss of converter components within the rated load range under the discontinuous conduction mode, which is unaffected by the reverse recovery characteristics of the anti-parallel diode of the output-side power switch. The validity of the proposed design methodology is verified using a 25 W bidirectional flyback converter prototype. The operational principles and the performance of the DPP operation are verified using practical DPP modules consisting of bidirectional flyback converters implemented according to the proposed design methodology.

SOLUTIONS FOR QUADRATIC TRINOMIAL PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS IN ℂn

  • Molla Basir Ahamed;Sanju Mandal
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.975-995
    • /
    • 2024
  • In this paper, we utilize Nevanlinna theory to study the existence and forms of solutions for quadratic trinomial complex partial differential-difference equations of the form aF2 + 2ωFG + bG2 = exp(g), where ab ≠ 0, ω ∈ ℂ with ω2 ≠ 0, ab and g is a polynomial in ℂn. In order to achieve a comprehensive and thorough analysis, we study the characteristics of solutions in two specific cases: one when ω2 ≠ 0, ab and the other when ω = 0. Because polynomials in several complex variables may exhibit periodic behavior, a property that differs from polynomials in single complex variables, our study of finding solutions of equations in ℂn is significant. The main results of the paper improved several known results in ℂn for n ≥ 2. Additionally, the corollaries generalize results of Xu et al. [Rocky Mountain J. Math. 52(6) (2022), 2169-2187] for trinomial equations with arbitrary coefficients in ℂn. Finally, we provide examples that endorse the validity of the conclusions drawn from the main results and their related remarks.

Design Sensitivity Analysis of Welded Strut Joints on Vehicle Chassis Frame (샤시 프레임에 용접한 스트러트 접합부의 설계 민감도 해석)

  • 김동우;양성모;김형우;배대성
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 1998
  • Design sensitivity analysis of a vehicle system is an essential tool for design optimization and trade-off studies. Most optimization algorithms require the derivatives of cost and constraint function with respect to design in order to calculate the next improved design. This paper presents an efficient algorithm application for the design sensitivity analysis, using the direct differentiation method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method. A mounting area of suspension that welded on chassis frame is analyzed to show the validity and the efficiency of the proposed method.

  • PDF

Development of a Simulation Scenario on Emergency Nursing Care of Dyspnea Patients (간호사를 위한 호흡곤란 응급관리 시뮬레이션 시나리오 개발)

  • Kang, Hye-Won;Hur, Hea-Kung
    • Journal of Korean Critical Care Nursing
    • /
    • v.3 no.2
    • /
    • pp.61-76
    • /
    • 2010
  • Purpose: This study was aimed to construct an algorithm of dyspnea emergency care and develop a simulation scenario for emergency care of dyspnea based on the algorithm. Methods: The first stage of this methodological study was to construct a preliminary algorithm based on a literature review, and content and clinical validity were established. Reflecting the result of content and clinical validity for this preliminary algorithm, simulation scenario was developed based on the modified Bay Area Simulation Collaborative scenario template. The content validity of this scenario was established, and clinical applicability was tested by applying this scenario to nurses. Results: The final simulation scenario of emergency care of dyspnea consisted of scenario overview, curricular integrity, and scenario script. The scenario was proceeded on 7 phases of the algorithm as follows; initial assessment, immediate emergency care, reassessment of dyspnea, monitoring respiratory failure, checking pulse if respiratory failure occurs, decision making on cardiopulmonary resuscitation or intubation, determining a differential diagnosis according to origin of dyspnea. Conclusion: The simulation scenario of emergency care of dyspnea developed in this study may provide a strategy of simulation education for emergency care of dyspnea for nurses.

  • PDF

Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.714-724
    • /
    • 2006
  • In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.

An Approach to a Formal Linearization toy Time-variant Nonlinear Systems using Polynomial Approximations

  • Komatsu, Kazuo;Takata, Hitoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.2-52
    • /
    • 2002
  • In this paper we consider an approach to a formal linearization for time-variant nonlinear systems. A time-variant nonlinear sysetm is assumed to be described by a time-variant nonlinear differential equation. For this system, we introduce a coordinate transformation function which is composed of the Chebyshev polynomials. Using Chebyshev expansion to the state variable and Laguerre expansion to the time variable, the time-variant nonlinear sysetm is transformed into the time-variant linear one with respect to the above transformation function. As an application, we synthesize a time-variant nonlinear observer. Numerical experiments are included to demonstrate the validity of...

  • PDF

Flexible 효과를 고려한 다물체 시스템의 동역학적 해석에 관한 연구

  • 최승렬;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.349-353
    • /
    • 1992
  • The purpose of this paper is to develop methods for the dynamic analysis of multibody system that consist of interconnected rigid and deformable component. The equations of motion are derived by using the Lagrange's equation and finite element theory for the elastic mechanism systems. The type of equation of motion is the differential algebraic equation included kinematic nonlinear algebraic equation. The generalized coordinate partitioning method is used for solving this equation. To show the validity of this analysis solver, couple of models were canalized and those results were compared with the commercial package(ADAMS).