• Title/Summary/Keyword: Differential Fault Attack

Search Result 23, Processing Time 0.016 seconds

A Differential Fault Attack against Block Cipher HIGHT (블록 암호 HIGHT에 대한 차분 오류 공격)

  • Lee, Yu-Seop;Kim, Jong-Sung;Hong, Seok-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.485-494
    • /
    • 2012
  • The block cipher HIGHT is designed suitable for low-resource hardware implementation. It established as the TTA standard and ISO/IEC 18033-3 standard. In this paper, we propose a differentail fault attack against the block cipher HIGHT. In the proposed attack, we assume that an attacker is possible to inject a random byte fault in the input value of the 28-th round. This attack can recover the secret key by using the differential property between the original ciphertext and fault cipher text pairs. Using 7 and 12 error, our attack recover secret key within a few second with success probability 87% and 51%, respectively.

Differential Fault Attack on SSB Cipher (SSB 암호 알고리즘에 대한 차분 오류 공격)

  • Kang, HyungChul;Lee, Changhoon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.48-52
    • /
    • 2015
  • In this paper, we propose a differential fault analysis on SSB having same structure in encryption and decryption proposed in 2011. The target algorithm was designed using advanced encryption standard and has advantage about hardware implementations. The differential fault analysis is one of side channel attacks, combination of the fault injection attacks with the differential cryptanalysis. Because SSB is suitable for hardware, it must be secure for the differential fault analysis. However, using proposed differential fault attack in this paper, we can recover the 128 bit secret key of SSB through only one random byte fault injection and an exhausted search of $2^8$. This is the first cryptanalytic result on SSB having same structure in encryption and decryption.

A Secure AES Implementation Method Resistant to Fault Injection Attack Using Differential Property Between Input and Output (입.출력 차분 특성을 이용한 오류 주입 공격에 강인한 AES 구현 방안)

  • Park, Jeong-Soo;Choi, Yong-Je;Choi, Doo-Ho;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1009-1017
    • /
    • 2012
  • The fault injection attack has been developed to extract the secret key which is embedded in a crypto module by injecting errors during the encryption process. Especially, an attacker can find master key of AES using injection of just one byte. In this paper, we proposed a countermeasure resistant to the these fault attacks by checking the differences between input and output. Using computer simulation, we also verified that the proposed AES implementation resistant to fault attack shows better fault detection ratio than previous other methods and has small computational overheads.

Differential Fault Analysis for Round-Reduced AES by Fault Injection

  • Park, Jea-Hoon;Moon, Sang-Jae;Choi, Doo-Ho;Kang, You-Sung;Ha, Jae-Cheol
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.434-442
    • /
    • 2011
  • This paper presents a practical differential fault analysis method for the faulty Advanced Encryption Standard (AES) with a reduced round by means of a semi-invasive fault injection. To verify our proposal, we implement the AES software on the ATmega128 microcontroller as recommended in the standard document FIPS 197. We reduce the number of rounds using a laser beam injection in the experiment. To deduce the initial round key, we perform an exhaustive search for possible key bytes associated with faulty ciphertexts. Based on the simulation result, our proposal extracts the AES 128-bit secret key in less than 10 hours with 10 pairs of plaintext and faulty ciphertext.

A Round Reduction Attack on Triple DES Using Fault Injection (오류 주입을 이용한 Triple DES에 대한 라운드 축소 공격)

  • Choi, Doo-Sik;Oh, Doo-Hwan;Bae, Ki-Seok;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • The Triple Data Encryption Algorithm (Triple DES) is an international standard of block cipher, which composed of two encryption processes and one decryption process of DES to increase security level. In this paper, we proposed a Differential Fault Analysis (DFA) attack to retrieve secret keys using reduction of last round execution for each DES process in the Triple DES by fault injections. From the simulation result for the proposed attack method, we could extract three 56-bit secret keys using exhaustive search attack for $2^{24}$ candidate keys which are refined from about 9 faulty-correct cipher text pairs. Using laser fault injection experiment, we also verified that the proposed DFA attack could be applied to a pure microprocessor ATmega 128 chip in which the Triple DES algorithm was implemented.

Differential Fault Analysis on Block Cipher Piccolo-80 (블록 암호 Piccolo-80에 대한 차분 오류 공격)

  • Jeong, Ki-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.510-517
    • /
    • 2012
  • Piccolo-80 is a 64-bit ultra-light block cipher suitable for the constrained environments such as wireless sensor network environments. In this paper, we propose a differential fault analysis on Piccolo-80. Based on a random byte fault model, our attack can the secret key of Piccolo-80 by using the exhaustive search of $2^{24}$ and six random byte fault injections on average. It can be simulated on a general PC within a few seconds. This result is the first known side-channel attack result on Piccolo-80.

A Differential Fault Attack on Block Cipher SEED (블록 암호 SEED에 대한 차분 오류 공격)

  • Jeong, Ki-Tae;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • A differential fault attack(DFA) is one of the most efficient side channel attacks on block ciphers. Almost all block ciphers, such as DES, AES, ARIA, SEED and so on., have been analysed by this attack. In the case of the known DFAs on SEED, the attacker induces permanent faults on a whole left register of round 16. In this paper, we analyse SEED against DFA with differential characteristics and addition-XOR characteristics of the round function of SEED. The fault assumption of our attack is that the attacker induces 1-bit faults on a particular register. By using our attack, we can recover last round keys and the master key with about $2^{32}$ simple arithmetic operations. It can be simulated on general PC within about a couple of second.

Security Analysis of the Lightweight Cryptosystem TWINE in the Internet of Things

  • Li, Wei;Zhang, Wenwen;Gu, Dawu;Tao, Zhi;Zhou, Zhihong;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.793-810
    • /
    • 2015
  • The TWINE is a new Generalized Feistel Structure (GFS) lightweight cryptosystem in the Internet of Things. It has 36 rounds and the key lengths support 80 bits and 128 bits, which are flexible to provide security for the RFID, smart cards and other highly-constrained devices. Due to the strong attacking ability, fast speed, simple implementation and other characteristics, the differential fault analysis has become an important method to evaluate the security of lightweight cryptosystems. On the basis of the 4-bit fault model and the differential analysis, we propose an effective differential fault attack on the TWINE cryptosystem. Mathematical analysis and simulating experiments show that the attack could recover its 80-bit and 128-bit secret keys by introducing 8 faulty ciphertexts and 18 faulty ciphertexts on average, respectively. The result in this study describes that the TWINE is vulnerable to differential fault analysis. It will be beneficial to the analysis of the same type of other iterated lightweight cryptosystems in the Internet of Things.

Novel Differential Fault Attack Using Function-Skipping on AES (함수 생략 오류를 이용하는 AES에 대한 신규 차분 오류 공격)

  • Kim, Ju-Hwan;Lee, JongHyeok;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1263-1270
    • /
    • 2020
  • The differential fault attacks (DFA) are cryptoanalysis methods that reveal the secret key utilizing differences between the normal and faulty ciphertexts, which occurred when artificial faults are injected into an encryption device. The conventional DFA methods use faults to falsify intermediate values. Meanwhile, we propose the novel DFA method that uses a fault to skip a function. The proposed method has a very low attack complexity that reveals the secret key using one fault injected ciphertext within seconds. Also, we proposed a method that filters out ciphertexts where the injected faults did not occur the function-skipping. It makes our method realistic. To demonstrate the proposed method, we performed fault injection on the Riscure's Piñata board. As a result, the proposed method can filter out and reveal the secret key within seconds on a real device.

Differential Fault Analysis on AES by Recovering of Intermediate Ciphertext (중간 암호문 복구 방법을 이용한 AES 차분오류공격)

  • Baek, Yi-Roo;Gil, Kwang-Eun;Park, Jea-Hoon;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.5
    • /
    • pp.167-174
    • /
    • 2009
  • Recently, Li et al. proposed a new differential fault analysis(DFA) attack on the block cipher ARIA using about 45 ciphertexts. In this paper, we apply their DFA skill on AES and improve attack method and its analysis. The basic idea of our DFA method is that we recover intermediate ciphertexts in last round using final faulty ciphertexts and find out last round secret key. In addition, we present detail DFA procedure on AES and analysis of complexity. Furthermore computer simulation result shows that we can recover its 128-bit secret key by introducing a correct ciphertext and 2 faulty ciphertexts.