• Title/Summary/Keyword: Differential Circuit

Search Result 392, Processing Time 0.03 seconds

Study on DPA countermeasure method using self-timed circuit techniques (비동기회로 설계기술을 이용한 DPA(차분전력분석공격) 방어방법에 관한 연구)

  • 이동욱;이동익
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.879-882
    • /
    • 2003
  • Differential Power Analysis(DPA) is powerful attack method for smart card. Self-timed circuit has several advantages resisting to DPA. In that reason, DPA countermeasure using self-timed circuit is thought as one of good solution for DPA prevention. In this paper, we examine what self-timed features are good against DPA, and how much we can get benefit from it. Also we test several self-timed circuit implementation style in order to compare DPA resistance factor. Simulation results show that self-timed circuit is more resistant to DPA than conventional synchronous circuit, and can be used for designing cryptographic hardware for smart-card.

  • PDF

Design and Construction of Multi-wire Proportional Counter and Preamplifier for Measurement of Charged Particle (하전입자의 측정을 위한 다중선 비례계수기와 전치증폭기의 설계 제작)

  • Kim, Jong-Soo;Yoon, Suk-Chull
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.139-143
    • /
    • 1996
  • A multi-wire proportional counter with large sensitive area was designed and constructed considering diameter of anode wire. its material and space. A preamplifier connecting detector to main amplifier or counter was also designed and constructed for measurement output pulse from multi-wire proportional counter. The preamplifier was composed of charge-sensitive differential circuit. clipping circuit and amplification circuit. To test the performance of this equipment, terminal output pulse from the preamplifier was measured and compared with noise For these tests $^{239}Pu(360 Bq)\;and\; ^{90}Sr/^{90}Y(250 Bq)$ were used as radiation sources. The noise ingredient contributing to the maximum amplitude(180mV from $^{239}Pu$ and 200 mV from $^{90}Sr/^{90}Y$) was found to be very small(8 mV) Piled up pulse occurring at the output pulse of charge-sensitive differential circuit was measured as an independent pulse since this affected the amplification in the clipping circuit and amplification circuit. This information can be used to improve the loss of measurement due to piled up pulse.

  • PDF

Touch Position Recovery Algorithm for Differential Sensing Touch Screen

  • Kim, Ji-Ho;Won, Dong-Min;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.106-114
    • /
    • 2016
  • Differential sensing methods are more effective in alleviating panel noise than single-line sensing, and thus have been increasingly used in the touch screen industry. However, they have a drawback: they tend to cancel out multiple touches and need touch position recovery algorithms. This paper introduces a novel algorithm of touch position recovery for differential sensing, which is a low-complexity but high-accuracy approach for determining multiple touch positions. We have implemented the proposed method in a touch screen controller system on a chip. In the simulation experiments using realistic touch screen models and a differential sensing circuit, the algorithm exhibited a high detection performance of a signal-to-noise ratio gain of up to 52.21 dB. Therefore, we can conclude that the proposed method is substantially more accurate than the previous method. Further, the proposed method incurs little or no overhead in terms of the detection speed and the chip size.

Performance Improvement of MSK and GMSK by Differential Demodulation (차동복조에 의한 MSK 및 GMSK의 성능개선)

  • 정우철;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.591-601
    • /
    • 1993
  • In this paper, the relationship between k consecutive outputs of the conventional differential detector and output of differential detector with k-bit delayer MSK and GMSK signal, using a k-bit delay circuit, is the product of k successive output of the conventional differential detector. This relationships are used to generalize the structure of receiver which was proposed by Makrakis using 2-bit delay line. The error rate performance of the proposed method is carried out by computer simulation and significant performance improvement is achieved for differential MSK and GMSK system.

  • PDF

Study of Radiated Emissions from Common-Mode and Differential-Mode Currents (공통 모드와 차동 모드 전류로 부터 발생하는 방사성 방출에 대한 연구)

  • Zhang, Nan;Bae, Hyeon-Ju;Lee, June-Sang;Lee, Jae-Joong;Park, Young-Hak;Nah, Wan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1652-1653
    • /
    • 2011
  • This paper builds a printed circuit board to calculate the radiated emissions due to the common-mode and differential-mode currents. The calculated results agree with the measured values. Based on the calculated values, it is shown clearly that the common-mode radiations are the dominator of the radiated emissions from the device. The radiated emissions due to the common-mode currents can easily dominate the radiated emissions from the printed circuit board.

  • PDF

Dynamic analysis of electromechanical system (기전 시스템의 동역학 해석)

  • 김진식;박정훈;임홍재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1113-1118
    • /
    • 2004
  • This paper presents the dynamic analysis method for an electromechanical system. The engineer has at his disposal a variety of software simulation tools. However, difficulties arise when the study of the behavior of complex electromechanical systems in combination with coupling element is required. Typical examples of such systems are machines for factory automation, home automation, and office automation. Dynamic systems analysis packages or electronic systems analysis packages offer the restrictive to simulate these mixed systems such electromechanical product. Electronic circuit analysis algorithm is easily incorporated into a multi-body dynamics analysis algorithm. The governing equation of electronic circuit is formulated as a differential algebraic equation form including both electrical and mechanical variables and is simultaneously solved in every time step. This analysis method clearly demonstrates the application potential for mixed electromechanical simulation.

  • PDF

Design of Asynchronous Comparator for 1.2Gbps Signal Receiver (1.2 Gbps 신호 복원기를 위한 비동기 비교기의 설계)

  • 임병찬;권오경
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.137-140
    • /
    • 2001
  • This paper shows an asynchronous comparator circuit for 1.2Gbps signal receiver that converts 1.2Gbps data rate input signals with less than 100㎷ swing to on-chip CMOS compatible voltage levels in a 0.35${\mu}{\textrm}{m}$ CMOS process. Folded-cascode nMOS input stage with source-coupled pMOS input stage cover rail-to-rail input common-mode range. Drastic gain-bandwidth increment due to gain-boosting stage with positive-feedback latch as well as wide input common-mode range make designed circuit be suitable for a fully differential signal receiver. HSPICE simulation results show that worst-case sensitivity is less than 20㎷ and maximum propagation delay is 640-psec. And also we verified 3.97㎽ power consumption with 150㎷ differential swing amplitude at 1.2Gbps.

  • PDF

Design and Fabrication of an Aluminum-Gate PMOS Differential Amplifier (알루미늄 게이트 PMOS 차동증폭기의 설계 및 제작)

  • 신장규;권우현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.1
    • /
    • pp.14-19
    • /
    • 1982
  • A differential amplifier has been designed and fabricated using aluminum-gate PMOS technology, Only enhaneement-mode MOSFET's are used in the circuit and the dimensions of transistors have been determined using simulation program MSINC. The fabricated integrated circuit with +15V and -l5V power supplies shows an open-loop DC voltage gain of 42 dB, a common mode rejection ratio (CMRR) of 50 dB, and a Power consumption of 20mW.

  • PDF

Method for High-Frequency Modeling of Common-Mode Choke (공통모드 초크의 간단한 고주파 모델링 기법)

  • Jung, Hyeonjong;Yoon, Seok;Kim, Yuseon;Bae, Seok;Lim, Yeongseog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.964-973
    • /
    • 2017
  • In this paper, we analyze the effects of parasitic components of common-mode choke on the common mode and differential mode in a wide band, and we propose a simple method for high-frequency modeling. Common mode and differential mode 2-port networks were configured and the S-parameters in each mode were measured using a network analyzer. Equivalent circuit elements were extracted from the measured results to model a high-frequency equivalent circuit, and the validity was verified by comparing the measured S-parameters with the simulation results.

Application of VSI-EBG Structure to High-Speed Differential Signals for Wideband Suppression of Common-Mode Noise

  • Kim, Myunghoi;Kim, Sukjin;Bae, Bumhee;Cho, Jonghyun;Kim, Joungho;Kim, Jaehoon;Ahn, Do Seob
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.827-837
    • /
    • 2013
  • In this paper, we present wideband common-mode (CM) noise suppression using a vertical stepped impedance electromagnetic bandgap (VSI-EBG) structure for high-speed differential signals in multilayer printed circuit boards. This technique is an original design that enables us to apply the VSI-EBG structure to differential signals without sacrificing the differential characteristics. In addition, the analytical dispersion equations for the bandgap prediction of the CM propagation in the VSIEBG structure are extracted, and the closed-form expressions for the bandgap cutoff frequencies are derived. Based on the dispersion equations, the effects of the impedance ratio, the EBG patch length, and via inductances on the bandgap of the VSI-EBG structure for differential signals are thoroughly examined. The proposed dispersion equations are verified through agreement with the full-wave simulation results. It is experimentally demonstrated that the proposed VSI-EBG structure for differential signaling suppresses the CM noise in the wideband frequency range without degrading the differential characteristics.