• 제목/요약/키워드: Differential Algebraic Equation

검색결과 106건 처리시간 0.023초

웨이블릿 및 시스템 분할을 이용한 특이섭동 선형 시스템 해석 (Wavelet-based Analysis for Singularly Perturbed Linear Systems Via Decomposition Method)

  • 김범수;심일주
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1270-1277
    • /
    • 2008
  • A Haar wavelet based numerical method for solving singularly perturbed linear time invariant system is presented in this paper. The reduced pure slow and pure fast subsystems are obtained by decoupling the singularly perturbed system and differential matrix equations are converted into algebraic Sylvester matrix equations via Haar wavelet technique. The operational matrix of integration and its inverse matrix are utilized to reduce the computational time to the solution of algebraic matrix equations. Finally a numerical example is given to demonstrate the validity and applicability of the proposed method.

임의 형상 고정단 평판의 고정밀도 고유치 해석을 위한 파동 함수 기반 무요소법 (Meshless Method Based on Wave-type Function for Accurate Eigenvalue Analysis of Arbitrarily Shaped, Clamped Plates)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.602-608
    • /
    • 2016
  • The paper proposes a practical meshless method for the free vibration analysis of clamped plates having arbitrary shapes by extending the non-dimensional dynamic influence function (NDIF) method, which was developed by the author in 1999. In the proposed method, the domain and boundary of the plate of interest are discretized using only nodes without elements unlike FEM and the system matrices are obtained by making domain nodes and boundary nodes satisfy the governing differential equation and boundary conditions, respectively. However, since the above system matrices are not square ones, the problem of free vibrations of clamped plates is not reduced to an algebraic eigenvalue problem. An additional theoretical treatment is considered to produce an algebraic eigenvalue problem. It is revealed from case studies that the proposed method is valid and accurate.

쌍일차계에 대한 FDI(고장검출 및 분리)의 대수적인 해석에 관한 연구 (A Study on the Algebraic Analysis of FDI(failure detection and isolation) in Bilinear System)

  • 인돈기;조영호;오민환;김재일;채영무;안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2627-2629
    • /
    • 2000
  • This paper introduces the design of a reduced order observer with unknown inputs for the purpose of fault detection and isolation(FDI) in a class of bilinear systems. To Analyze the observer and FDI, this paper uses BPF(block-pulse functions). The operational properties of BPF are much applied to the analysis of bilinear systems. The integral operational matrix BPF converts the form of the differential equation into the algebraic problems.

  • PDF

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

연계(連繫)된 전력계통(電力系統)의 최적(最適) 부하주파수(負荷周波數) 제어(制御)

  • 한만춘;장성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1979년도 하계 전자.전기연합학술발표회논문집
    • /
    • pp.119-120
    • /
    • 1979
  • A linear state equation of the first order differential form relating the load-frequency dynamic characteristics of interconnected power systems was derived for use in computer simulation. A now solution of the algebraic matrix riccati equation for application in quadratic optimal controllor and least-square state estimator dermination was developed. The program for a dynamic state equation for two interconnected control areas was developed. The optimized load-frequency deviation was analysed and a numerical analysis was tried based on the computer simulation. It was shown that the dynamic response of th loed-frequency could be optimized with weighting factors IR and Q. The result was that the load-frequency and the tie-line deviation were visibly reduced.

  • PDF

탄성기계 시스템의 동적 거동 해석을 위한 수치 적분 알고리즘 개선에 관한 연구 (A Study on the Improvement of Numeric Integration Algorithm for the Dynamic Behavior Analysis of Flexible Machine Systems)

  • 김외조;김현철
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.87-94
    • /
    • 2001
  • In multibody dynamics, differential and algebraic equations which can satisfy both equation of motion and kinematic constraint equation should be solved. To solve this equation, coordinate partitioning method and constraint stabilization method are commonly used. The coordinate partitioning method divides the coordinate into independent and dependent coordinates. The most typical coordinate partitioning method arc LU decomposition, QR decomposition, projection method and SVD(sigular value decomposition).The objective of this research is to find a efficient coordinate partitioning method in flexible multibody systems and a hybrid decomposition algorithm which employs both LU and projection methods is proposed. The accuracy of the solution algorithm is checked with a slider-crank mechanism.

  • PDF

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.

Numerical simulation of non-isothermal flow in oil reservoirs using a two-equation model

  • dos Santos Heringer, Juan Diego;de Souza Debossam, Joao Gabriel;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.147-168
    • /
    • 2019
  • This work aims to simulate three-dimensional heavy oil flow in a reservoir with heater-wells. Mass, momentum and energy balances, as well as correlations for rock and fluid properties, are used to obtain non-linear partial differential equations for the fluid pressure and temperature, and for the rock temperature. Heat transfer is simulated using a two-equation model that is more appropriate when fluid and rock have very different thermal properties, and we also perform comparisons between one- and two-equation models. The governing equations are discretized using the Finite Volume Method. For the numerical solution, we apply a linearization and an operator splitting. As a consequence, three algebraic subsystems of linearized equations are solved using the Conjugate Gradient Method. The results obtained show the suitability of the numerical method and the technical feasibility of heating the reservoir with static equipment.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.