• Title/Summary/Keyword: Difference matrix

Search Result 970, Processing Time 0.038 seconds

A Study on Ageing Characteristics and Alloy Elements of SiCp Reinforced Al Matrix Composites (SiCp입자강화 Al 복합재료에 대한 합금원소의 영향과 시효특성에 관한 연구)

  • Kim, Sug-Won;Lee, Ui-Jong;Woo, Kee-Do;Kim, Dong-Keun
    • Journal of Korea Foundry Society
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • The research on new DRA(discontinuous reinforced alloy) and CRA(continous reinforced alloy) composites has been carried out to improve the properties of ceramic fiber and particle reinforced metal matrix composites(MMCs). Effects of alloying elements and aging conditions on the microstructures and aging behavior of Al-Si-Cu-Mg-(Ni)-SiCp composite have been examined. The specimens used in this study were manufactured by duplex process. The first squeeze casting is the process to make precomposite and the second squeeze casting is the process to make final composite. The hardening behavior was accelerated with decreasing the size of SiCp particle in the composites. It is considered that the dislocation density increased with increasing SiCp size, due to the different thermal deformation between Al matrix and SiCp during quenching after the solution treatment. Peak aging time to obtain the maximum hardness in 3 ${\mu}m$ SiCp reinforced Al composite was reduced than that in large size(5, 10 ${\mu}m$) of SiCp because of difference in dislocation density. Aging hardening responce(${\Delta}H$ = $H_{Max}.-H_{S.T}$) of composites was greater than that of unreinforced Al alloy because of higher density of second phases in matrix.

  • PDF

Geochemical and Stable Isotopic Studies of the Matrix of Pebble Bearing Phyllitic Rocks and Carbonate Rocks from the Suanbo and Susanri District in the Okchon Geosynclinal Zone (옥천지향사대 내 수안보-수산 지역에 분포하는 함력천매암질암 기질의 화학 조성과 탄산염암의 안정동위원소 연구)

  • Kim, Kyu Han;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.25-33
    • /
    • 1996
  • Stable isotopic ratios of the carbonate rocks and chemical compositions of the matrix of pebble bearing phyllitic rocks known as the Hwanggangri Formation, which are in hot debate on their origin such as tillite, debris flow and turbidite, were determined to interpret their depositional environment. Argillaceous matrix of the pebble bearing phyllitic rocks has a high content of CaO (av. 19.5%) and MgO (av. 8.3%), corresponding to calcareous sandy shale. No difference of chemical compositions including trace elements and REE is in the matrices between the Hwanggangri and the Kunjasan Formations. Carbonate rocks from the Okchon zone and outside of the zone range $-2.5{\sim}+6.1$‰ in ${\delta}^{13}C$ and $+5.8{\sim}+25.9$‰ in ${\delta}^{18}O$, indicating normal marine limestone. However, unusally $^{13}C$ enriched carbonate rocks might be deposited in the highly evaporated sedimentary basin. A wide variation of ${\delta}^{18}O$ values is responsible for metamorphism with a $^{18}O$ depleted meteoric water. Isotopic equilibrium temperatures by graphite-calcite geothermometer show a higher metamorphic temperature ($547{\sim}589^{\circ}C$) in the Okchon zone than those ($265{\sim}292^{\circ}C$) in the Samtaesan Formation of the Chosun group. Rhythmic alternation of relatively thin shale with thin limestone in the Kounri Formation is not cherty layer but thin limesilicate bed by metasomatic replacement. Judging from the isotopic and chemical compositions of the carbonate rocks and calcareous matrix of the pebble bearing phyllitic rocks, the Hwangganari Formation was deposited in the shallow marine environment favorable to debris flow.

  • PDF

Half-Pixel Accuracy Motion Estimation Algorithm in the Transform Domain for H.264 (H.264를 위한 주파수 영역에서의 반화소 정밀도 움직임 예측 알고리듬)

  • Kang, Min-Jung;Heo, Jae-Seong;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.917-924
    • /
    • 2008
  • Motion estimation and compensation in the spatial domain check the searching area of specified size in the previous frame and search block to minimize the difference with current block. When we check the searching area, it consumes the most encoding times due to increasing the complexity. We can solve this fault by means of motion estimation using shifting matrix in the transform domain instead of the spatial domain. We derive so the existed shifting matrix to a new recursion equation that we decrease more computations. We modify simply vertical shifting matrix and horizontal shifting matrix in the transform domain for motion estimation of half-pixel accuracy. So, we solve increasing computation due to bilinear interpolation in the spatial domain. Simulation results prove that motion estimation by the proposed algorithm in DCT-based transform domain provides higher PSNR using fewer bits than results in the spatial domain.

Importance-Performance Analysis (IPA) of the Core Competence of Gifted Education Teachers (영재교육 담당교원의 핵심역량 인식에 대한 중요도와 실행도(IPA) 분석)

  • Lee, Mina;Park, Sung Hee
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.6
    • /
    • pp.927-949
    • /
    • 2015
  • The purpose of this study was to find out the difference between importance and performance regarding perception of core competence of gifted education teachers through importance-performance analysis (IPA). One hundred fourteen elementary gifted education teachers including math and science participated in the study. The collected survey data was analyzed with IPA matrix. As the result, firstly, there was significant difference between importance and performance regarding perception of core competence of gifted education teachers. Secondly, core competencies of 'understanding knowledge', 'research and instruction', 'passion and motivation', and 'ethics' are high in both perceptions of importance and performance. However, both 'communication and practices' and 'professional curriculum development' are low. Thirdly, there was a difference in core competence of gifted education teachers between math and science at the competence of 'passion and motivation'. Math gifted education teachers perceived 'passion and motivation' high in both importance and performance while science gifted education teachers perceived its importance low and performance high. In addition, math gifted education teachers showed lower performance compared to its importance in the sub-categories; 'knowledge of gifted development', 'gifted child assessment', 'information gathering and its literacy', and 'creative answers to various questions'. However, science gifted education teachers showed lower performance compared to its importance in sub-categories; 'higher-order thinking skills in its subject', 'teaching methodology for self-directed learning', 'problem behavior of the gifted', and 'counseling the gifted'.

REAL - TIME ORBIT DETERMINATION OF LOW EARTH ORBIT SATELLITES USING RADAR SYSTEM AND SGP4 MODEL (RADAR 시스템과 SGP4 모델을 이용한 저궤도 위성의 실시간 궤도결정)

  • 이재광;이성섭;윤재철;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • In case that we independently obtain orbital informations about the low earth satellites of foreign countries using radar systems, we develop the orbit determination algorithm for this purpose using a SGP4 model with an analytical orbit model and the extended Kalman filter with a real-time processing method. When the state vector is Keplerian orbital elements, singularity problems happen to compute partial derivative with respect to inclination and eccentricity orbit elements. To cope with this problem, we set state vector osculating to mean equinox and true equator cartesian elements with coordinate transformation. The state transition matrix and the covariance matrix are numerically computed using a SGP4 model. Observational measurements are the type of azimuth, elevation and range, filter process to each measurement in a lump. After analyzing performance of the developed orbit determination algorithm using TOPEX/POSEIDON POE(precision 0.bit Ephemeris), its position error has about 1 km. To be similar to performance of NORAD system that has up to 3km position accuracy during 7 days need to radar system performance that have accuracy within 0.1 degree for azimuth and elevation and 50m for range.

A Study on Speaker Identification by Difference Sum and Correlation Coefficient of Intensity Levels from Band-pass Filtered Sounds (대역별로 여과한 음성 강도의 차이값과 상관계수에 의한 화자확인 연구)

  • Yang, Byung-Gon
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.249-258
    • /
    • 2003
  • This study attempted to examine a speaker identification method using difference sum and correlation coefficient determined from a pair of intensity level matrices of band-pass-filtered numeric sounds produced by ten female speakers of similar age and height. Subjects recorded three digit numbers at a quiet room at a sampling rate of 22 kHz on a personal computer. Collected data were band-pass-filtered at five different band ranges. Then, matrices of five intensity levels at 100 proportional time points were obtained. Pearson correlation coefficients and the sum of absolute intensity differences between a pair of given matrices were determined within and across the speakers. Results showed that very high correlation coefficient and small difference sum generally occurred within each speaker but some individual variation was also observed. Thus, the matrix pair with a higher coefficient and a smaller difference sum was averaged to form each individual's model. Comparison among the speakers yielded generally low coefficients and large differences, which suggests successful speaker identification, but among them there were a few cases with very high coefficients and small differences. Future studies will focus on finer band ranges and additional spectral parameters at some peak points of the intensity contour at a low frequency band.

  • PDF

The effect of gelatin-coating on embryonic stem cells as assessed by measuring Young's modulus using an atomic force microscope

  • Hyunhee Song;Hoon Jang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.121-130
    • /
    • 2023
  • Background: Coating a culture plate with molecules that aid in cell adhesion is a technique widely used to produce animal cell cultures. Extracellular matrix (ECM) is known for its efficiency in promoting adhesion, survival, and proliferation of adherent cells. Gelatin, a cost-effective type of ECM, is widely used in animal cell cultures including feeder-free embryonic stem (ES) cells. However, the optimal concentration of gelatin is a point of debate among researchers, with no studies having established the optimal gelatin concentration. Methods: In this study, we coated plastic plates with gelatin in a concentration-dependent manner and assessed Young's modulus using atomic force microscopy (AFM) to investigate the microstructure of the surface of each plastic plate. The adhesion, proliferation, and differentiation of the ESCs were compared and analyzed revealing differences in surface microstructure dependent on coating concentration. Results: According to AFM analysis, there was a clear difference in the microstructure of the surface according to the presence or absence of the gelatin coating, and it was confirmed that there was no difference at a concentration of 0.5% or more. ES cell also confirmed the difference in cell adhesion, proliferation, and differentiation according to the presence or absence of gelatin coating, and also it showed no difference over the concentration of 0.5%. Conclusions: The optimum gelatin-coating for the maintenance and differentiation of ES cells is 0.5%, and the gelatin concentration-mediated microenvironment and ES cell signaling are closely correlated.

Impact Properties of Glass/Kevlar Hybrid Composites (유리/케블라 하이브리드 구조로 강화된 복합재료의 충격 거동)

  • Joo, Ki-Ho;Ryou, Han-Sun;Chung, Kwan-Soo;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.191-194
    • /
    • 2005
  • Impact properties of glass/Kevlar hybrid composites which have 3-D braided structures were studied. Results were compared to those of composites made of only glass fibers where the same epoxy resin were used as matrix. Absorbed impact energies evaluated through the combination of the data from the impact tester and high speed camera were compared to each other. In order to see the difference between the damaged area distribution CCD camera captures were performed.

  • PDF

Effects of Humidity and Structure on Friction and Wear Properties of Carbon Fiber/Epoxy Composites (탄소 섬유/에폭시 복합 재료의 마찰 및 마멸 성질에 미치는 습도 및 구조의 영향)

  • 심현해;권오관;윤재륜
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.11a
    • /
    • pp.63-68
    • /
    • 1990
  • Friction and wear behavior of a unidirectional high modulus carbon fiber reinforced epoxy composite exposed to high and low humidity was experimentally examined with various sliding speeds. The results show that the moisture at the sliding surface greatly influences friction and wear properties of the composite. It is also discoverd that the difference in friction and wear behavior between samples with different fiber orientations is mainly due to the anisotropic properties caused by the microstructure of oriented graphite crystals in the carbon fibers and the macrostructure of fiber orientation in the matrix.

  • PDF

Effects of Humidity and Structure on Friction and Wear Properties of Carbon Fiber/Epoxy Composites (탄소 섬유/에폭시 복합 재료의 마찰 및 마멸 성질에 미치는 습도 및 구조의 영향)

  • 심현해;권오관;윤재륜
    • Tribology and Lubricants
    • /
    • v.6 no.2
    • /
    • pp.88-93
    • /
    • 1990
  • Friction and wear behavior of a unidirectional high modulus carbon fiber reinforced epoxy composite exposed to high and low humidity was experimentally examined with various sliding speeds. The results show that the moisture at the sliding surface greatly influences friction and wear properties of the composite. It is also discoverd that the difference in friction and wear behavior between samples with different fiber orientations is mainly due to the anisotropic properties caused by the microstructure of oriented graphite crystals in the carbon fibers and the macrostructure of fiber orientation in the matrix.