• Title/Summary/Keyword: Difference Time of arrival

Search Result 295, Processing Time 0.03 seconds

Localization of partial discharge in power transformer by detecting UHF PD signal (UHF 부분방전 신호를 이용한 전력용 변압기 내부의 부분방전 위치 추정)

  • Ju, Hyung-Jun;Goo, Seun-Gun;Han, Ki-Sun;Park, Ki-Jun;Yoon, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.147-148
    • /
    • 2008
  • In this paper two kinds of techniques were compared for localization of PD(partial discharge) in power transformer and more useful method was suggested. Both of them, the time of arrival and the energy content method, were tested in 154kV single phase experimental transformer using UHF signal measurement. The former was using the difference of arrival time of recorded signals from four UHF sensors, the latter was based on the energy content in frequency spectra of signals detected at all sensors.

  • PDF

Optimize OTDOA-based Positioning Accuracy by Utilizing Multiple Linear Regression Model under NB-IoT Technology (NB-IoT 기술에서 Multiple Linear Regression Model을 활용하여 OTDOA 기반 포지셔닝 정확도 최적화)

  • Pan, Yichen;Kim, Jaesoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.139-142
    • /
    • 2020
  • NB-IoT(Narrow Band Internet of Things) is an emerging LPWAN(Low Power Wide Area Network) radio technology. NB-IoT has many advantages like low power, low cost, and high coverage. However low bandwidth and low sampling rates also lead to poor positioning accuracy. This paper proposed a solution to optimize positioning accuracy under the OTDOA(Observed Time Difference of Arrival) approach by utilizing MLR(Multiple Linear Regression) models. Through the MLR model to predict the influence degree of weather(temperature, humidity, light intensity and air pressure) on the arrival time of signal transmission to improve the measurement accuracy. The improvement of measurement accuracy can greatly improve IoT applications based on NB-IoT.

  • PDF

A Study to Estimate the Onset Time of an Impulsive Borehole Source (임펄시브형 시추공용 탄성파 송신신호 시작시간 측정에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.71-76
    • /
    • 2003
  • Accurate estimation of the first arrival travel time is an essential task to obtain a high resolution velocity tomogram. Accuracy of the travel time estimation may be influenced by two factors; geological and mechanical. A serious mechanical factor is the source firing control problems. We found the control problems in the records generated by tome impulsive borehole sources. The problems are; irregular firing control and uncertainty in estimation of the absolute firing-times shown in records. Definitely, the time difference will introduce an error to the first arrival times, and accordingly; it will cause some distortion in the resulting velocity tomogram. A method to determine the firing time is suggested here. The method determines the optimum onset time by comparing the horizontal and the NMO velocity with various amount of delay time adjustment.

UWB Based Short-Range Wireless Positioning by One-Shot Transmission and Method (UWB기반 단일송수신을 통한 근거리 무선측위 시스템)

  • Choi, Sung-Soo;Oh, Hui-Myung;Shin, Yo-An;Lee, Jae-Jo;Lee, Young-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3049-3051
    • /
    • 2005
  • 본 논문은 UWB(Ultra Wide Band) 펄스 기반의 단일 송수신을 통한 근거리 무선측위 시스템 및 방법에 관한 것으로서, UWB 펄스의 높은 시간 분해능을 이용하여 근거리에서 높은 정밀도를 가지고 태그의 위치를 획득할 수 있다. 특히, 마스터-슬레이브 형태로 구성된 비콘(beacon)들 간의 사전 설정을 통해 마스터 비콘과 무선측위 대상인 태그 사이의 단일 송수신만으로 ToA(Time of Arrival) 및 TDoA(Time Difference of Arrival) 기법을 적용할 수 있도록 하며, 이로써 태그의 신호 송신을 최소화하여 태그의 저전력 동작을 가능케하는 UWB기반 단일송수신을 통한 근거리 무선측위 시스템이다.

  • PDF

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

Localization of Underwater Noise Sources Using TDOA (Time Difference of Arrival) Method (도달지연시간 기법을 이용한 수중 소음원의 위치추적)

  • Ahn, Byoung-Kwon;Go, Yeong-Ju;Rhee, Wook;Choi, Jong-Soo;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • As considerable interests in noise emission from a ship have been increased, the need for localization of noise sources of the marine propeller generating cavitation and singing noise is looming large. In many practical cases, cavitation and singing noise occur on a particular position of the certain blade of the propeller. It is so important to know the position of noise source correctly in order to eliminate or suppress unwanted noise. In this study, we develop "noise source localization technology" using TDOA method. Experimental measurements carried out at the circulating water channel and towing tank show that noise source can be clearly identified and localized using TDOA method.

A Study on the Detection of Acoustic Signal Produced by Partial Discharges in Insulation Oil and its Positioning (부분방전에 의한 음향신호의 검출과 위치추정에 관한 연구)

  • Kil, Gyung-Suk;Park, Dae-Won;Kim, Il-Kwon;Choi, Su-Yeon;Park, Chan-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.907-911
    • /
    • 2007
  • This paper dealt with the frequency spectrum analysis of acoustic signal produced by partial discharge (PD) in insulation oil and the positioning of PD occurrence to apply in diagnosis of oil insulated transformers. Three types of electrode system ; the needle-plane, the plane-plane, and the wire-wire structure were assembled to simulate partial discharges in oil insulated transformers. A low-noise amplifier and a decoupling circuit were designed to detect acoustic signal with high sensitivity The frequency spectrum of the acoustic signal were 50 kHz ${\sim}$ 260 kHz in the needle-plane, 50 kHz ${\sim}$ 250 kHz in the plane-plane, and 45 kHz${\sim}$195 kHz in the wire-wire electrode system. Their peak frequencies were 145 kHz, 130 kHz and 114 kHz, respectively The position of PD occurrence was calculated by the time difference of arrival (TOA) using three acoustic emission (AE) sensors, and we could find the position within the error of 1 % in the experimental apparatus.

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

An Algorithm for De-Interleaving of Wobble and Sinusoidal PRIs for Unidentified Radar Signals (미상 레이더의 Wobble 및 Sinusoidal PRI 식별 알고리즘)

  • Lee, Yongsik;Lim, Joongsoo;Lim, Jaesung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1100-1107
    • /
    • 2015
  • In this paper, we propose an algorithm to identify Wobble PRI and Sinusoidal PRI among Radar pulses. We applied not only the DTOA(Difference Time Of Arrival) concept of radar pulse signals incoming to antennas but also a rising and falling cub characteristic of those PRIs. After making a program by such algorithm, we input each 40 data to Wobble PRI's and Sinusoidal PRI's identification programs and in result, those programs fully processed the data the according to expectations. In the future, those programs can be applied to the ESM, ELINT system.

Sound Source Localization Method Applied to Robot System (로봇 시스템에 적용될 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.28-32
    • /
    • 2007
  • While various methods for sound source localization have been developed, most of them utilize on the time difference of arrival (TDOA) between microphones or the measured head related transfer functions (HRTF). In case of a real robot implementation, the former has a merit of light computation load to estimate the sound direction but can not consider the effect of platform on TDOAs, while the latter can, because characteristics of robot platform are included in HRTF. However, the latter needs large resources for the HRTF database of a specific robot platform. We propose the compensation method which has the light computation load while the effect of platform on TDOA can be taken into account. The proposed method is used with spherical head related transfer function (SHRTF) on the assumption that robot platform, for example a robot head, installed microphones can be modeled to a sphere. We verify that the proposed method decreases the estimation error caused by the robot platform through the simulation and experiment in real environment.

  • PDF