• Title/Summary/Keyword: Diethyl phthalate

Search Result 35, Processing Time 0.027 seconds

Chemical Changes of Kanjang Made with Barley Bran (보리등겨로 제조한 간장의 각종 성분 변화)

  • Lee, Eun-Jeong;Kwon, O-Jun;Im, Moo-Hyeog;Choi, Ung-Kyu;Son, Dong-Hwa;Lee, Suk-Il;Kim, Dae-Gon;Cho, Young-Je;Kim, Woo-Seong;Kim, Sung-Hong;Chung, Yung-Gun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.751-756
    • /
    • 2002
  • For the development of functional jang-products, kanjang was prepared using barley bran. Optical density of barley bran kanjang was significantly high at 15 days after fermentation, and the amount of extract was $2{\sim}3$ fold higher than that of soybean kanjang. Among the flavor components identified in barley bran kanjang, the content of 2-furancarboxaldehyde was the highest, followed by 4-vinyl-2-methoxy-phenol, benzene-acetaldehyde, palmitic acid, and methyl-9,12-octadecadienoate. In barley bran and soybean mixtare (1 : 1) kanjang, the content of 2-furancarboxaldehyde was the highest, followed by benzeneacetaldehyde, diethyl phtalate, palmitic acid, and 2-chloroethyl linoleate. Flavor components detected in both barley bran kanjang and barey bran and soybean mixture kanjang were 2-furancarboxaldehyde, benzaldehyde, benzeneacetaldthyde, 4-vinyl-2-mehtoxy-phenol, 1-furfuryl-2-formy pyrrole, dimethyl-1,2-benzenedicarboxylate, diethyl phtalate, palmiticacid, dibutyl-1,2-benzenedicarboxylate, and di-(2-ethylhexyl)phthalate.

Biodegradation of Endocrine-Disrupting Phthalates by Pleurotus ostreatus

  • Hwang, Soon-Seok;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.767-772
    • /
    • 2008
  • Biodegradation of endocrine-disrupting phthalates [diethyl phthalate (DEP), dimethyl phthalate (DMP), butylbenzyl phthalate (BBP)] was investigated with 10 white rot fungi isolated in Korea. When the fungal mycelia were added together with 100 mg/l of phthalate into yeast extract-malt extract-glucose (YMG) medium, Pleurotus ostreatus, Irpex lacteus, Polyporus brumalis, Merulius tremellosus, Trametes versicolor, and T. versicolor MrP1 and MrP13 (transformant of the Mn-repressed peroxidase gene of T. versicolor) could remove almost all of the 3 kinds of phthalates within 12 days of incubation. When the phthalates were added to 5-day pregrown fungal cultures, most fungi except I. lacteus showed the increased removal of the phthalates compared with those of the non-pregrown cultures. In both culture conditions, p. ostreatus showed the highest degradation rates for the 3 phthalates tested. BBP was degraded with the highest rates among the 3 phthalates by all fungal strains. Only 14.9% of 100 mg/I BBP was degraded by the supernatant of P. ostreatus culture in YMG medium in 4 days of incubation, but the washed or homogenized mycelium of P. ostreatus could remove 100% of BBP within 2 days even in distilled water, indicating that the initial BBP biodegradation by P. ostreatus may be attributed to mycelium-associated enzymes rather than extracellular enzymes. The biodegradation rate of BBP by the immobilized cells of P. ostreatus was almost same as that in the suspended culture. The estrogenic activity of 100 mg/I DMP decreased during biodegradation by P. ostreatus.

Migration of di-(ethylhexyl)phthalate from PVC food packaging materials detected plasticizer into flood simulanting solvent (가소제가 검출된 PCV 식품용기에서의 식품유사침출 용매에 따른 디에틸헥실프탈레이트 용출에 관한 연구)

  • 김일영;유인실;이정미;김성단;정소영;한상운
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.127-131
    • /
    • 2002
  • Migration of di-(ethylhexyl)phthalate (DEHF) from PVC food packaging materials detected plasticizer into food simulanting solvents(4% Acetic acid, 8% Ethanol, 50% Ethanol, 95% Ethanol, Heptane) were studied. For executing this study ,2 PVC food packaging materials detected DEHP were used. Analysis was by GC-FID and GC-MSD(selected ion monitoring) for DEHP, and optimized for quantification of plasticizer. The recovery of DEHP into food simulanting solvents were min. 87.4${\pm}$ 3.6 ∼ max. 109.9 ${\pm}$ 10.7% respectively. Following exposure to food simulants 95% Ethanol for 24hours at 60$^{\circ}C$ the migration results of 1020.90 ${\pm}$ 10.15$\mu\textrm{g}$/g, 563.54 ${\pm}$ 5.60$\mu\textrm{g}$/dm$^2$and 73.51 ${\pm}$ 5.09$\mu\textrm{g}$/g 149.22 ${\pm}$ 10.34$\mu\textrm{g}$/dm$^2$were detected from the container for lunch and for stock fish respectively.

  • PDF

Review on Toxic Substances in the Liquid and Gas Phases of Electronic Cigarettes (전자담배 액상 및 기체상 중 유해물질 고찰)

  • Shin, Ho-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.483-491
    • /
    • 2013
  • Objectives: Electronic cigarettes are battery powered devices that convert a nicotine-containing liquid into an inhalable vapor. The device aerosolizes nicotine so that it is readily entrained into the respiratory tract, from where it enters the bloodstream. Information on the safety of E-cigarettes is required. Methods: Seventeen articles on studies analyzing toxic substances in the liquid and gas phases of electronic cigarettes were reviewed. Results: Tobacco-specific nitrosamines, bis(2-ethylhexyl) phthalate, formaldehyde and acetaldehyde, known to be carcinogenic agents in humans or animals, were detected in the liquid and gas phases. In addition, diethyl phthalate, acetone, ethanol, cresol, xylene, propylene, styrene, triethylene glycol, tetraethylene glycol, pentaethylene glycol cis-3-hexen-1-ol, methyl cinnamate and undecane were identified in the liquid and gas phases of E-cigarettes. Propylene glycol, glycerin, 1-methoxy-2-propanol, 1-hydroxy-2- propanone, acetic acid, 1-menthone, 2,3-butanediol, menthol, carvone, maple lactone, benzyl alcohol, 2-methyl-2-pentanoic acid, ethyl mantel, ethyl cinnamate, myosamine, benzoic acid, 2,3-bipyridine, cotinine, hexadecanoic acid, and 1'1-oxybis-2-propanol were detected in the vapors of E-cigarettes. Conclusion: The hazardous compounds identified in the liquid and gas phases of E-cigarettes should be controlled for the lowest concentrations in the raw materials and production procedures.

Simple Method in Trace Analysis of Phthalates in Cosmetics : Analytical Conditions and Skills for Better Results (화장품에서 프탈레이트 미량분석을 위한 간편한 분석법 : 향상된 결과를 위한 분석조건과 기술)

  • Kim, Min-Kee;Jung, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.51-55
    • /
    • 2008
  • Although phthalates aren't used as an cosmetic ingredient, some cosmetics especially nail lacquer, hair spray, and perfume still have phthalates. This is mainly caused by contamination and carryover during manufacturing process, so analysis of phthalates in those cosmetics has became a very important thing for quality-assurance(Q.A). The main phthalates under debate are diethyl phthalate(DEP), dibutyl phthalate(DBP), and bis(2-ethylhexyl) phthalate (DEHP) in domestic market. Gas chromatography-mass spectrometry(GC-MS) coupled with solvent extraction and concentration has been used for ppm level and sub ppm level analysis of phthalates. It requires much time and cost to use mass spectrometric detector and to prepare the test solution. Moreover analysis of phthalates at low concentrations is difficult because of contamination which results in wrong analytical results. In the present study, we showed a simple method using gas chromatography-flame ionization detector(GC-FID) which has fast analysis time, minimum use of solvent, reduced sample preparation steps for minimizing contamination and quantitative range of $2{\sim}50{\mu}g/g(ppm)$ in products. Consequently, this method will be proper for Q.A analysis in related companies.

Antifungal Activities of Biorelevant Complexes of Copper(II) with Biosensitive Macrocyclic Ligands

  • Raman N.;Joseph J.;Velan A. Senthil Kumara;Pothiraj C.
    • Mycobiology
    • /
    • v.34 no.4
    • /
    • pp.214-218
    • /
    • 2006
  • Four copper(II) complexes have been prepared using macrocyclic ligands. The macrocyclic ligands have been synthesized by the condensation reaction of diethyl phthalate with Schiff bases derived from o-phenylene diamine and Knoevenagel condensed ${\beta}-ketoanilides$ (obtained by the condensation of acetoacetanilide and substituted benzaldehydes). The ligands and copper complexes have been characterized on the basis of Microanalytical, Mass, UV-Vis., IR and CV spectral studies, as well as conductivity data. On the basis of spectral studies, a square-planar geometry for the copper complexes has been proposed. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans. All the synthesized copper complexes showed stronger antifungal activities than free ligands. The minimum inhibitory concentrations (MIC) of the copper complexes were found in the range of $8{\sim}28\;{\mu}g/ml$. These compounds represent a novel class of metal-based antifungal agents which provide opportunities for a large number of synthetic variations for modulation of the activities.

Effects of Noble Gas on the Sonolytic Decomposition (초음파분해반응에 있어서 희가스의 영향)

  • 임봉빈;김선태
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.749-755
    • /
    • 2002
  • The effects of noble gas (such as helium, neon, argon, krypton, and xenon) on the sonolytic decomposition of water and 2-methyl-2-propanol(t-butanol) with 200 KHz high power ultrasound were investigated. The physical properties of the noble gas have an effect on the formation rate of products $(H_2O_2,\;H_2,\;O_2)$ and the decomposition rate on the sonolytic decomposition of water. The pyrolysis products, such as methane, ethane, ethylene, and acetylene are formed during the sonolytic decomposition of t-butanol. From the estimation of the ratio $[C_2H_4+C_2H_2] / [C_2H_6]$, the cavitation temperature would be varied by the used noble gas. In all cases for the sonolytic decomposition of water, t-butanol, and diethyl phthalate, the decomposition rates were xenon > krypton > argon > neon > helium with a significant difference and were closely correlated with the formation rate of OH radical and high temperature inside the cavitation bubble under each noble gas.

Studies on the Cellulose Acetate Glasses Frame Sheet (셀룰로오스 아세테이트 안경테 판재에 관한 연구)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eunjoo;Go, Young Jun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: The purpose of this study was to assess characterize overseas company's Cellulose acetate glasses frame sheets (overseas company's CA sheet) Also, the optimum content of plasticizer and melt extrusion condition of industrial CA resin were established for appropriate glasses frame. Methods: Overseas company's Cellulose acetate glasses frame sheets (overseas company's CA sheet) were characterized by $^1H$-NMR, GPC, and TGA. Also, the optimum content of plasticizer and melt extrusion condition of industrial CA resin were established. Results: The plasticizer of overseas company's CA sheet measured by $^1H$-NMR was diethyl phthalate, and its content was measured 30 wt% by TGA. Also, industrial CA resin showed enough melting behavior in the range of 190~200$^{\circ}C$. Compared to overseas company's CA sheet's tensile strength value of 2.2~2.8 kgf/$mm^2$, industrial CA resin exhibited sufficient tensile strength value of 2.3 kgf/$mm^2$ for glasses frame. Conclusions: Industrial CA resin with 30 wt% plasticizer content would be a promising material for glasses frame prepared by melt extrusion to replace China CA sheet.

Characteristics of Liquid-Liquid Direct Contact Heat Exchanger for a Solar System (태양열 이용을 위한 직접접촉식 액-액 열교환기 특성)

  • 강인석;김종보;강용혁;곽희열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3276-3286
    • /
    • 1994
  • In most direct contact liquid-liquid heat exchangers, oil or hydrocarbon with a density less than water is normally used as dispersed working fluid. The main difficulty that arises with this arrangement lies in the control of the interface at the top of the column. When it is connected with a solar collector which uses water as its working fluid, the main difficulties arise from the fact that the water can be frozen during winter time. In order to solve these problems and to demonstrate the technical feasibility of a direct contact liquid-liquid heat exchanger, liquids heavier than water with low freezing temperature has been utilized as dispersed phase liquids in a small laboratory scale model made of pyrex glass. In the present investigation, dimethyl phthalate(C/sub 6/H/sub 4/)COOCH/sub 3/)/sub 2/) and diethyl phthalate (C/sub 6/H/sub 4/(CO/sub 2/C/sub 2/H/sub 5/)/sub 2/) are utilized as heavy dispersed phase working fluids. The results of the present investigation the technical in the utilization of heavier dispersed working liquid in the spray-column liquid-liquid heat exchanger for a solar system. The overall average temperature difference along the column is found to be almost half of the initial temperature difference between the dispersed and the continuous phase. Despite the fact that the two phthalates tested in the experiment differ significantly in some of their physical properties, the volumetric heat transfer coefficients in terms of dispersed fluid superficial velocities were found to be similar for both phthalates tested.

Controlled Transdermal Delivery of Loxoprofen from an Ethylene-Vinyl Acetate Matrix

  • Ryu, Sang-Rok;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.347-354
    • /
    • 2011
  • Repeated oral administration of loxoprofen can induce many side effects such as gastric disturbances and acidosis. Therefore, we considered alternative routes of administration for loxoprofen to avoid such adverse effects. The aim of this study was to develop an ethylene-vinyl acetate (EVA) matrix system containing a permeation enhancer for enhanced transdermal delivery of loxoprofen. The EVA matrix containing loxoprofen was fabricated and the effects of drug concentration, temperature, enhancer and plasticizer on drug release were studied from the loxoprofen-EVA matrix. The solubility of loxoprofen was highest at 40% (v/v) PEG 400. The release rate of drug from drug-EVA matrix increased with increased loading dose and temperature. The release rate was proportional to the square root of loading dose. The activation energy (Ea), which was measured from the slope of log P versus 1000/T, was 5.67 kcal/mol for a 2.0% loaded drug dose from the EVA matrix. Among the plasticizer used, diethyl phthalate showed the highest release rate of loxoprofen. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the greatest enhancing effect. In conclusion, for the enhanced controlled transdermal delivery of loxoprofen, the application of the EVA matrix containing plasticizer and penetration enhancer could be useful in the development of a controlled drug delivery system.