Biodegradation of Endocrine-Disrupting Phthalates by Pleurotus ostreatus

  • Hwang, Soon-Seok (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University) ;
  • Choi, Hyoung-Tae (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
  • Published : 2008.04.30

Abstract

Biodegradation of endocrine-disrupting phthalates [diethyl phthalate (DEP), dimethyl phthalate (DMP), butylbenzyl phthalate (BBP)] was investigated with 10 white rot fungi isolated in Korea. When the fungal mycelia were added together with 100 mg/l of phthalate into yeast extract-malt extract-glucose (YMG) medium, Pleurotus ostreatus, Irpex lacteus, Polyporus brumalis, Merulius tremellosus, Trametes versicolor, and T. versicolor MrP1 and MrP13 (transformant of the Mn-repressed peroxidase gene of T. versicolor) could remove almost all of the 3 kinds of phthalates within 12 days of incubation. When the phthalates were added to 5-day pregrown fungal cultures, most fungi except I. lacteus showed the increased removal of the phthalates compared with those of the non-pregrown cultures. In both culture conditions, p. ostreatus showed the highest degradation rates for the 3 phthalates tested. BBP was degraded with the highest rates among the 3 phthalates by all fungal strains. Only 14.9% of 100 mg/I BBP was degraded by the supernatant of P. ostreatus culture in YMG medium in 4 days of incubation, but the washed or homogenized mycelium of P. ostreatus could remove 100% of BBP within 2 days even in distilled water, indicating that the initial BBP biodegradation by P. ostreatus may be attributed to mycelium-associated enzymes rather than extracellular enzymes. The biodegradation rate of BBP by the immobilized cells of P. ostreatus was almost same as that in the suspended culture. The estrogenic activity of 100 mg/I DMP decreased during biodegradation by P. ostreatus.

Keywords

References

  1. Chakraborty, J. and T. K. Dutta. 2006. Isolation of a Pseudomonas sp. capable of utilizing 4-nonylphenol in the presence of phenol. J. Microbiol. Biotechnol. 16: 1740-1746
  2. Chang, B. V., T. H. Wang, and S. Y. Yuan. 2007. Biodegradation of four phthalate esters in sludge. Chemosphere 69: 1116-1123 https://doi.org/10.1016/j.chemosphere.2007.04.011
  3. Chatterjee, S. and T. K. Dutta. 2003. Metabolism of butylbenzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem. Biophys. Res. Commun. 309: 36-43 https://doi.org/10.1016/S0006-291X(03)01513-4
  4. Gartshore, J., D. G. Cooper, and J. A. Nicell. 2003. Biodegradation of plasticizers by Rhodotorula rubra. Environ. Toxicol. Chem. 22: 1244-1251 https://doi.org/10.1002/etc.5620220609
  5. Kim, H.-Y. and H.-G. Song. 2000. Comparison of 2,4,6- trinitrotoluene degradation by seven strains of white rot fungi. Curr. Microbiol. 41: 317-320 https://doi.org/10.1007/s002840010142
  6. Kim, H.-Y. and H.-G. Song. 2000. Transformation of 2,4,6- trinitrotoluene by white rot fungus Irpex lacteus. Biotechnol. Lett. 22: 969-975 https://doi.org/10.1023/A:1005636914121
  7. Lee, S.-M., B.-W. Koo, S.-S. Lee, M.-K. Kim, D.-H. Choi, E.-J. Hong, E.-B. Jeung, and I.-G. Choi. 2004. Biodegradation of dibutylphthalate by white rot fungi and evaluation on its estrogenic activity. Enz. Microb. Technol. 35: 417-423 https://doi.org/10.1016/j.enzmictec.2004.06.001
  8. Lee, Y., C. Park, B. Lee, E.-J. Han, T.-H. Kim, J. Lee, and S. Kim. 2006. Effect of nutrients on the production of extracellular enzymes for decolorization of reactive blue 19 and reactive black 5. J. Microbiol. Biotechnol. 16: 226-231
  9. Li, J., J.-A. Chen, Q. Zhao, X. Li, and W. Shu. 2007. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber. Chemosphere 65: 1627- 1633
  10. Linder, M. B., G. R. Szilvay, T. Nakari-Setala, and M. E. Penttila. 2005. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 29: 877-896 https://doi.org/10.1016/j.femsre.2005.01.004
  11. Nalli, S., D. G. Cooper, and J. A. Nicell. 2002. Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation 13: 343-352 https://doi.org/10.1023/A:1022313810852
  12. Niazi, J. H., D. T. Prasad, and T. B. Karegoudar. 2001. Initial degradation of dimethylphthalate by esterases from Bacillus species. FEMS Microbiol. Lett. 196: 201-205 https://doi.org/10.1111/j.1574-6968.2001.tb10565.x
  13. Nishikawa, J.-I., K. Saito, J. Goto, F. Dakeyama, M. Matsuo, and T. Nishihara. 1999. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicol. Appl. Pharm. 154: 76-83 https://doi.org/10.1006/taap.1998.8557
  14. Okamoto, Y., T. Hayashi. C. Toda, K. Ueda, K. Hashizume, K. Itoh, J. Nishikawa, T. Nishihara, and N. Kojima. 2006. Formation of estrogenic products from environmental phthalate esters under light exposure. Chemosphere 64: 1785-1792 https://doi.org/10.1016/j.chemosphere.2005.12.046
  15. Patil, N. K., Y. Veeranagouda, M. H. Vijaykumar, S. A. Nayak, and T. B. Karegoudar. 2006. Enhanced and potential degradation of o-phthalate by Bacillus sp. immobilized cells in alginate and polyurethane. Int. Biodeterior. Biodegradation 57: 82-87 https://doi.org/10.1016/j.ibiod.2005.11.007
  16. Penas, M. M., B. R. Luis, M. Larray, L. Ramirez, and A. G. Pisabarro. 2002. Differentially regulated, vegetative-mycelium-specific hydrophobins of the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 68: 3891-3898 https://doi.org/10.1128/AEM.68.8.3891-3898.2002
  17. Reddy, C. A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6: 320-328 https://doi.org/10.1016/0958-1669(95)80054-9
  18. Shin, E.-H., H. T. Choi, and H.-G. Song. 2007. Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus. J. Microbiol. Biotechnol. 17: 1147-1151
  19. Suzuki, K., H. Hirai, H. Murata, and T. Nishida. 2003. Removal of estrogenic activities of 17 $\beta$-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res. 37: 1972-1975 https://doi.org/10.1016/S0043-1354(02)00533-X
  20. Svobodova, K., A. Majcherczyk, E. Novotny, and U. Kues. 2006. Implication of mycelium-associated laccase from I. lacteus in the decolorization of synthetic dyes. Bioresour. Technol. 99: 463-471 https://doi.org/10.1016/j.biortech.2007.01.019
  21. Tamagawa, Y., R. Yamaki, H. Hirai, S. Kawai, and T. Nishida. 2006. Removal of estrogenic activity of natural steroidal hormone estrone by ligninolytic enzymes from white rot fungi. Chemosphere 65: 97-101 https://doi.org/10.1016/j.chemosphere.2006.02.031
  22. Xu, X.-R., J.-D. Gu, H.-B. Li, and X.-Y. Li. 2005. Kinetics of di-n-butyl phthalate degradation by a bacterium isolated from mangrove sediment. J. Microbiol. Biotechnol. 15: 946-951
  23. Yan, H. and G. Pan. 2004. Increase in biodegradation of dimethyl phthalate by Clostridium lunular using inorganic carbon. Chemosphere 55: 1281-1285 https://doi.org/10.1016/j.chemosphere.2003.12.019
  24. Yeo, S., N. Park, H.-G. Song, and H. T. Choi. 2007. Generation of a transformant showing higher manganese peroxidase (Mnp) activity by overexpression of mnp gene in Trametes versicolor. J. Microbiol. 45: 213-218
  25. Yoon, Y.-H., S.-H. Park, S.-H. Leem, and S. I. Kim. 2006. Cloning of p-hydroxybenzoate degradation genes and the overexpression of protocatechate 4,5-dioxygenase from Pseudomonas sp. K82. J. Microbiol. Biotechnol. 16: 1995-1999
  26. Yuan, S. Y., C. Liu, C. S. Liao, and B. V. Chang. 2002. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49: 1295-1299 https://doi.org/10.1016/S0045-6535(02)00495-2
  27. Waring, R. H. and R. M. Harris. 2005. Endocrine disrupter: A human risk. Mol. Cell. Endocrinol. 244: 2-9 https://doi.org/10.1016/j.mce.2005.02.007
  28. Zeng, F., K. Cui, X. Li, J. Fu, and G. Sheng. 2004. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process Biochem. 39: 1125-1129 https://doi.org/10.1016/S0032-9592(03)00226-7