• Title/Summary/Keyword: Dietary fatty acids

Search Result 771, Processing Time 0.033 seconds

Biological Significance of Essential Fatty Acids/Prostanoids/Lipoxygenase-Derived Monohydroxy Fatty Acids in the Skin

  • Ziboh, Vincent-A.;Cho, Yunhi;Mani, Indu;Xi, Side
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.747-758
    • /
    • 2002
  • The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin $E_2(PGE_2)$ and $PGF_{2{\alpha}}$, the metabolism of AA via the 15-lipoxygenase (15-LOX) pathway, which is very active in skin epidermis and catalyzes the transformation of M into predominantly 15S-hydroxyeicosatetraenoic acid (15S-HETE). Additionally, the 15-LOX also metabolizes the 18-carbon LA into 13S-hydroxyoctadecadienoic acid (13S-HODE), respectively. Interestingly, 15-LOX catalyzes the transformation of $dihomo-{\gamma}-linolenic$ acid (DGLA), derived from dietary gamma-linolenic acid, to 15S-hydroxyeicosatrienoic acid (15S-HETrE). These monohydroxy fatty acids are incorporated into the membrane inositol phospholipids which undergo hydrolytic cleavage to yield substituted-diacylglycerols such as 13S-HODE-DAG from 13S-HODE and 15S-HETrE-DAG from 15S-HETrE. These substituted-monohydroxy fatty acids seemingly exert anti-inflammatory/antiproliferative effects via the modulation of selective protein kinase C as well as on the upstream/down-stream nuclear MAP-kinase/AP-1/apoptotic signaling events.

n-3 Fatty Acids (EPA, DHA) and Health (n-3 지방산과 건강)

  • 이수환
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.2
    • /
    • pp.101-105
    • /
    • 1992
  • There is increasing awareness of the devastating socio-economic cost of cardiovascular disease. As a result there have been a lot of extensive researches both on basic mechanisms involved and on the areas of epidemiology and clinical trials. Now it is being generally accepted that dietary n-3 fatty acids abundant in marine products, may reduce the incidence of cadiovascular disease. Fish oil . with its complement of n-3 fatty acids, has been shown the have diverse and sometimes potent actions on cells of the blood and vasculature, which may explain some of its positive effects on vascular disease. However, the appropriate intake of n-3 fatty acids has not been established. This may vary with desired effects, the duration of ingestion, the type of seafood or fish oil and amount of other fatty acids, especially n-6 fatty acid being consumed in the diet. Although the beneficial effects have been extensively studied, little is known about potential adverse effects with excessive intake of n-3 fatty acids. Thus, it is needed to study on the possible unfavorable effects including genetic effects.

  • PDF

Functional Amino Acids and Fatty Acids for Enhancing Production Performance of Sows and Piglets

  • Kim, Sung Woo;Mateo, Ronald D.;Yin, Yu-Long;Wu, Guoyao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2007
  • The growth and health of the fetus and neonate are directly influenced by the nutritional and physiological status of sows. Sows are often under catabolic conditions due to restrict feeding program during pregnancy and low voluntary feed intake during lactation. The current restrict feeding program, which aims at controlling energy intake during gestation, results in an inadequate supply of dietary protein for fetal and mammary gland growth. Low voluntary feed intake during lactation also causes massive maternal tissue mobilization. Provision of amino acids and fatty acids with specific functions may enhance the performance of pregnant and lactating sows by modulating key metabolic pathways. These nutrients include arginine, branched-chain amino acids, glutamine, tryptophan, proline, conjugated linoleic acids, docosahexaenoic acid, and eicosapentaenoic acid, which can enhance conception rates, embryogenesis, blood flow, antioxidant activity, appetite, translation initiation for protein synthesis, immune cell proliferation, and intestinal development. The outcome is to improve sow reproductive performance as well as fetal and neonatal growth and health. Dietary supplementation with functional amino acids and fatty acids holds great promise in optimizing nutrition, health, and production performance of sows and piglets. (Supported by funds from Texas Tech, USDA, NLRI-RDA-Korea, and China NSF).

Effects of Dietary β-Glucan on Short Chain Fatty Acids Composition and Intestinal Environment in Rats (식이 베타-글루칸이 흰쥐의 장내 단쇄지방산 조성 및 장내환경 개선에 미치는 영향)

  • Hong, Kyung Hee;Jang, Ki-Hyo;Kang, Soon Ah
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.2
    • /
    • pp.162-170
    • /
    • 2016
  • The effects of dietary ${\beta}$-glucan, obtained from bacterial fermentation, on the intestinal mass, short chain fatty acids, lactate production and pH in Sprague-Dawley (SD) rats were evaluated. SD rats fed with 0% (control group), 1% or 5% ${\beta}$-glucan supplemented diets (w/w) for 3 weeks. The presence of ${\beta}$-glucan in the diets resulted in a significant increase in colonic contents in a dose dependent manner. The amount of short chain fatty acids increased in rats fed ${\beta}$-glucan diets. Rats fed the 5% ${\beta}$-glucan diets had higher levels of acetate, propionate and butyrate by 1.8, 1.7 and 3.0 fold of the control group in the cecum, and 2.2, 2.9 and 3.1 fold of the control group in the colon, respectively. The ${\beta}$-glucan diets also significantly increased the levels of cecal and colonic lactate by 1.4~3.4 fold, when compared to the control diet, indicating that dietary ${\beta}$-glucan stimulated the growth of lactic acid bacteria within the intestine. These results suggest that dietary ${\beta}$-glucan, by providing short chain fatty acids and reducing the cecal and colonic pH, may be beneficial in improving gut health, and provide evidence for the use of ${\beta}$-glucan as a dietary supplement for human consumption.

Dietary Fatty Acid Intakes of Employees in Employee Feeding Operations (사업체 집단급식소 근로자의 지방산 섭취 조사 연구)

  • 정은정
    • Journal of Nutrition and Health
    • /
    • v.29 no.1
    • /
    • pp.9-21
    • /
    • 1996
  • This study was carried out to evaluate the fatty acid intakes of employees in employee feeding operations in Seoul and to provide prudent dietary guidelines with special concern on dietary fat. Four establishments were selected in large scale group and other four were selected as small scale group according to feeding numbers and food cost. Food intake was measured by substracting the leftover from the averaged portion amount. The leftover was measured by the modified aggregate selection plate waste measurement technique. The results were as follows : Employees from the large scale institution consumed more energy, protein, carbohydrate and niacin compared to those from the small scale institution(p<0.05). The mean calorie compositions of carbohydrate, protein and fat of all subjects were 66.7, 16.4 and 16.9%. The mean fat intake was 12.1g/lunch. Linoleic acid(C18:2 $\omega$6, 3.67g) was the most abundant fatty acid contained in the diet, followed by oleic acid (C18:1 $\omega$9, 3.53g) and palmitic acid(C16:0, 1.83g). The subjects consumed 5.2g polyunsaturated fatty acids(PUFA), 4.6g monounsaturated fatty acid(MUFA), 3.2g saturated fatty acid(SFA) per lunch per person. The average ratios of P/M/S and $\omega$6/$\omega$3 fatty acids were 1.6/1.5/1.0 and 8.5/1/0., respectively. the dietary $\omega$3 fatty acid status can be improved, even though the ratios found belong to the desirable range, by including $\omega$3 fatty acid rich-foods such as bean products and seafoods more frequently in the diet. Caution is needed for higher unsaturated nature of $\omega$3 series fatty acids to be prevented from peroxidation.

  • PDF

Effects of Dietary n-3 Highly Unsaturated Fatty Acids and Vitamin E Levels on the Growth and Fatty Acid Composition of Rockfish Sebastes schlegeli

  • Lee, Sang-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.118-126
    • /
    • 2010
  • A feeding trial was conducted to investigate the effects of different levels of dietary n-3 highly unsaturated fatty acids (HUFA) (1.1-5.6%) and vitamin E (70 and 400 mg/kg) on the growth and body composition of juvenile rockfish. Six isonitrogenous (45% crude protein) and isolipidic (17% crude lipid) diets were formulated to contain graded levels of n-3 HUFA and vitamin E. Diets 1, 2 and 3 consist of 400 mg vitamin E/kg diet with graded levels of 1.1, 3.0, and 5.6% n-3 HUFA, respectively. Graded levels of n-3 HUFA (1.1, 3.0, and 4.0%) were added in diets 4, 5 and 6, respectively, containing 70 mg vitamin E/kg diet each. At the end of feeding trial, growth performance of rockfish was affected by neither dietary n-3 HUFA nor vitamin E levels. Feed efficiency and hepatosomatic index were slightly decreased (P<0.05) with increment of dietary n-3 HUFA at each dietary vitamin E level. Dietary vitamin E and n-3 HUFA levels did not affect proximate composition and vitamin E concentration in the dorsal muscle of rockfish. Liver moisture and crude protein contents positively related to dietary n-3 HUFA levels. Liver lipid content and hematocrit value were significantly decreased (P<0.05) by increasing dietary n-3 HUFA levels. Eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA) concentrations in the dorsal muscle significantly correlated to dietary n-3 HUFA levels, except for fish fed the diet 6 containing 4% n-3 HUFA and 70 mg vitamin E/kg diet. EPA concentration in the dorsal muscle of fish fed the diet 6 was significantly lower than that of fish fed the diets 2, 3 and 5. The present findings suggest that feeding of diets containing excessive n-3 HUFA level with varying addition of vitamin E may alter fatty acid composition in the dorsal muscle, but do not affect growth of juvenile rockfish.

High Fat Diet or Exercise Training Alters Hepatic Total and Phospholipid fatty Acid Compositions in Rats (고지방식이 및 운동훈련이 흰쥐 간조직의 총지방산 및 인지질 지방산패턴에 미치는 영향)

  • Jung, Chung-Eun;Um, Young-Sook;Cha, Youn-Soo;Park, Tae-Sun
    • Journal of Nutrition and Health
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • Effects of high fat diet and/or endurance exercise training on hepatic total and phospholipid(PL) fatty acid compositions were evaluated in rats fed one of the following diets for 31 days. control diet(CD, 5 wt% corn oil) or high fat diet(HFD, 35 wt% corn oil). Half of the rats in each group were exercise-trained regularly on a treadmill for 90 minutes/day during the entire feeding period. Total and PL fatty acid compositions of hepatic lipid extracts were determined by a gas-liquid chromatograph),. Endurance exercise training did not change the daily food intake, but significantly reduced body weight gain and feed efficiency ratio of rats, which were most prominent in animals fed HFD. Exercise training did not significantly change the percentages of ∑saturated fatty acids (SFA) and ∑polyunsaturated fatty acids(PUEA), but decreased the percentage of ∑monounsaturated fatty acids(MUFA) in hepatic total fatty acids, which might be associated with the decrease in (equation omitted) 9-desaturation index of hepatic total fatty acid metabolism. Exercise training significantly lowered the percentages of 16 : 0 and 22 : 5$\omega$3, and increased the percentages of 20 : 1 and 20 : 3$\omega$3 in both total and PL fatty acid compositions in rat liver. Both total fatty acid and PL fatty acid compositions of rat liver responded more sensitively to changes in dietary fat content than to endurance exercise training in this study. Feeding HFD, whoch contains high level of linoleic acid(LA, 18 : 2$\omega$6), significantly decreased the percentages of ∑SFA and $\Sigma$MUFA, and increased the percentages of ∑PUFA and ∑$\omega$6 fatty acids of hepatic total fatty acids. Hepatic total fatty acid composition was affected by dietary fat content and dietary fatty acid composition more sensitively than those found in hepatic PL fatty acid composition. HFD significantly decreased most of desaturation indices, while exercise training significantly decreased elongation index(20 : 5$\omega$3⇒22 : 5$\omega$3) of hepatic total and PL fatty acid metabolism in rats. (Korean J Nutrition 33(1) : 13-22, 2000)

  • PDF

Fatty Acid Composition of Fry Mirror Carp (Cyprinus carpio) Fed Graded Levels of Sand Smelt (Atherina boyeri) Meal

  • Gumus, Erkan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.264-271
    • /
    • 2011
  • The effect of replacement of fish meal (FM) in diets with sand smelt meal (SSM) on fatty acid composition of carp fry, Cyprinus carpio, was examined. Five isonitrogenous and isoenergetic (38% crude protein, $15.75\;kJ\;g^{-1}$) diets replacing 0, 25, 50, 75, and 100% FM protein by SSM protein were formulated. Each diet was randomly allocated to triplicate groups of fish in aquaria, and each aquarium was stocked with 20 fish (initial average weight of $0.300{\pm}0.65\;g\;fish^{-1}$). Fish were fed twice daily to apparent satiation for 13 weeks. Results indicated that final weight, specific growth rate and feed efficiency ratio of fish fed with different SSM replacement diets did not differ significantly (p>0.05) from fish fed the control diet, except for 100% SSM level. No significant differences were noted among experimental treatments on dry matter, protein, lipid and ash contents of the fish body composition (p>0.05). Fatty acid analysis showed that saturated fatty acids in fish muscle significantly decreased, but monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not change with increasing dietary SSM. However, some changes also could be observed for some particular fatty acids in experimental fish. For example, the amounts of 15:0, 17:0, 18:1n-7, 18:2n-6 and 22:5n-3 significantly increased, but 16:0, 18:1n-9, 18:3n-3 and 20:1 n-9 significantly decreased with increasing dietary SSM. Total n-6 PUFA increased with increasing dietary SSM, but total n-3 PUFA were not changed in muscle of fish fed the experimental diets. The ratio of n-3 to n-6 was not affected significantly in muscle of fish fed the experimental diets containing different proportions of SSM, including the control diet.

Effect of Dietary Fatty Acids and Vitamin E Supplementation on Antioxidant Vitamin Status of the Second Generation Rat Brain Sections (식이 지방산 및 비타민 E 보충 식이가 흰쥐의 뇌조직 부위별 항산화 비타민 농도에 미치는 영향)

  • 박정화;황혜진;김미경;이양자
    • Journal of Nutrition and Health
    • /
    • v.34 no.7
    • /
    • pp.754-761
    • /
    • 2001
  • Effects of dietary fatty acids and vitamin E on antioxidant vitamin status were studied in rat brain sections. Sources of dietary fat(10t%) were safflower oil(SO) poor in $\omega$3 fatty acid and mixed oil (MO) with computer-adjustd fatty acid ratios(AA/DHA=1.4, $\omega$6/$\omega$3=6.3, P/M/S=1.0/1.5/1, AA=2.%)with (ME) and without(MO) vitamin E(500mg/kg diet). Rats were fed the three kinds of diet from 3-4 wks prior to the conception. At the age of 3 & 9wks of the 2nd generation rat, antioxidant vitamins were measured in frontal cortex(FC), corpus striatum (CS), cerebellum(CB) and hippocampus(HP) using a multiwavelength, reverse phase gradient HPLC system. The levels of antioxidant vitamins converged to the similar value in all groups at 9 wks of age. Retinol, lycopene and cryptoxanthin levels of all experimental groups were found to be the highest in hippocampus at both 3 & 9wks of age. The levels of vitamin E appeared to be higher in the order of HP>CS-CB>FC in MO & ME. Beta-carotene and retinol showed the lowest level in hippocampus of vitamin E supplemented groups, even though vitamin E level tended to be higher in other sections. It seemed that vitamin E has an inhibitory action on the uptake of beta-carotene or acts as a preferred antioxidant to beta-carotene in certain section of the brain. By improving fatty acid balance (AA/DHA = 1.4, $\omega$6/$\omega$3=6.3, P/M/S=1.0/1.5/1, AA = 2%), the levels of vitamin E, retinol, lycopene & beta=carotene tended to be higher in MO than in SO, although crytoxanthin became lower at 3wks of age. In short, dietary fatty acids and vitamin E have different influence on antioxidant vitamin status in different rat brain sections. The higher levels of antioxidant vitamins in hippocampus should be pursued further in relation to behavioral development of rats.

  • PDF

Estimating and evaluating usual total fat and fatty acid intake in the Korean population using data from the 2019-2021 Korea National Health and Nutrition Examination Surveys: a cross-sectional study (우리 국민의 총 지방 및 지방산 일상 섭취량 추정 및 평가: 2019 - 2021년 국민건강영양조사 자료를 활용한 단면조사연구)

  • Gyeong-yoon Lee;Dong Woo Kim
    • Korean Journal of Community Nutrition
    • /
    • v.28 no.5
    • /
    • pp.414-422
    • /
    • 2023
  • Objectives: This study evaluated usual dietary intakes of total fat and fatty acids among the Korean population based on the revised Dietary Reference Intakes for Koreans 2020 (2020 KDRIs). Methods: This study utilized data from the eighth Korea National Health and Nutrition Examination Survey (KNHANES 2019-2021). We included 18,895 individuals aged 1 year and above whose 1-day 24-hour dietary recall data were available. To calculate the external variability using the National Cancer Institute 1-day method, data from the U.S. NHANES 2017-March 2020 Pre-pandemic dataset were employed. The total fat and fatty acid intake were evaluated based on the Acceptable Macronutrient Distribution Ranges (AMDRs) and Adequate intake (AI) of 2020 KDRIs for each sex and age groups. Results: Approximately 86% of the Korean population obtained an adequate amount of energy from total fat consumption (within the AMDRs), indicating an appropriate level of intake. However, the percentage of individuals consuming saturated fatty acids below the AMDR was low, with only 12% among those under 19 years of age and 52% aged 19 years and older. On a positive note, approximately 70% of the population showed adequate consumption of essential fatty acids, exceeding the AI. Nevertheless, monitoring the intake ratio of omega 3 (n-3) to omega 6 (n-6) fatty acids is essential to ensure an optimum balance. Conclusions: This study explored the possibility of estimating the distribution of nutrient intake in a population by applying the external variability ratio. Therefore, if future KNHANES conduct multiple 24-hour recalls every few years-similar to the U.S. NHANES-even for a subset of participants, this may aid in the accurate assessment of the nutritional status of the population.