• Title/Summary/Keyword: Diesel spray combustion

Search Result 235, Processing Time 0.022 seconds

Numerical Analysis of Geometric Effects on Spray Characteristics in Small Direct-injection Diesel Engines (소형디젤기관 내 충돌부의 기구학적 조건에 대한 분무특성의 수치적 해석)

  • 류성목;차건종;김덕줄;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.55-65
    • /
    • 1999
  • Many researches have been investigating small direct-injection diesel engines using the spray impacting on walls. Those systems have one or more raised pips to break-up the fuel and spread it widely toward a desired direction in a combustion chamber. In this study, the sizes and heights of the pips are determined by using a computational fluid dynamics code employing non-orthogonal grid systems. In order to find out the suitable pip-shape to a small chamber, the spray behaviors, occupied spary volumes and averaged droplets sizes are calculated with the variation of shape of the pip, such as, size and heights and inclined degree. The desired shape of the impinging land is proposed for the design of combustion system in small diesel engines.

  • PDF

The Size Analysis of Raised Lands Prepared for Spray Impaction in OSKA Typed D.I. Diesel Engine Combustion Chamber (OSKA형 디젤기관 연소실의 충돌면 크기 분석)

  • 김재휘;홍영표;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.82-90
    • /
    • 1996
  • In a diesel engine the phenomenon of spray impaction on a chamber wall has been taken as an undesirable matter because of the deposition of fuel on the surfaces, and the subsequent slow evaporation and mixing with air resulting in unburned hydrocarbons. Therefore many researches have concentrated on avoiding fuel impingement on surfaces. On the contrary done a number of studies using spray wall impactions in a positive way, which makes the droplets smaller, changes the direction into free spaces far from the wall and also improves mixing with air. In this paper the size of the impaction site prepared for the injection spray which is raised from the bottom in the piston bowl center is analysed as both simulative and experimental manner.

  • PDF

An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure (분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구)

  • Jeong, Y.H.;Yang, J.W.;Oh, C.H.;Lim, O.T.
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

Injection characteristics of emulsified fuel and effect on diesel combustion (물혼합연료의 분사특성과 디젤연소에 미치는 영향)

  • Park, K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1997
  • Many technologies have been developed to improve diesel emissions or performance, however NOx/PM trade-off occurs because normal methods that reduce NOx emissions tend to increase PM emissions. On the other hand many measures used to control PM emissions tend to increase NOx emissions. Thus, simultaneously controlling both NOx and PM emissions has become a significant challenge for diesel engine manufacturers. As one of the measures, the technology using emulsified fuel has recently become important under the stringent emission regulations of diesel engines. This paper investigates injection characteristics of emulsified fuel and its effect on a combustion performance in a diesel engine. In order to supply emulsified fuel into injection system a mixing unit produced by Harrier is used, then the fuel mixed with water is supplied into injector directly. The spray injected is investigated with a shadowgraph photo system and injection analyzing apparatus, then applied into a diesel engine. Those results showed that the emulsified fuel has an effect on reducing both NOx and PM.

  • PDF

Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion (연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

Flamelet Modeling of Turbulent Nonpremixed Flames (층류화염편 모델을 이용한 난류 비예혼합 화염장 해석)

  • Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.9-16
    • /
    • 2000
  • The flamelet concept has been widely applied to numerically simulate complex phenomena occurred in nonpremixed turbulent flames last two decades, and recently broadened successfully the applicable capabilities to various combustion problems from simple laboratory flames to gas turbine engine, diesel spray combustion and partially premixed flames. The paper is focused on brief review of recently noticeable work related to flamelet modeling, which includes Lagrangian flamelet approach, RIF concept as well as steady flamelet approach. The limitation of steady flamelet assumption, the effect of transient behavior of flamelets, and the effect of spray vaporization on PDF model have been discussed.

  • PDF

A Study on the Injection Characteristics of Diesel-water Emulsion Fuels according to Compositions (디젤-워터 에멀젼 연료의 조성에 따른 분무 특성에 관한 연구)

  • Woo, Seungchul;Kim, Hyungik;Park, Jangsoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.263-270
    • /
    • 2015
  • Using Diesel-Water Emulsion fuel in commercial diesel engine can reduce NOx and soot when it is injected through the injector. Because water in Diesel-Water Emulsion fuel is vaporized ahead of diesel particle and it cause decrease of combustion temperature. Furthermore, research about the possibility of applicating Diesel-Water Emulsion fuels to commercial diesel engine is demanded in order to prove that Diesel-Water Emulsion fuel is able to apply commercial diesel engine without any replacement of equipments. This research analyzed applicable possibility of Diesel-Water Emulsion fuels to commercial diesel engine's fuel injection system refering injection and spray characteristics. In this research, there are 3 experiments, that is injection quantity, spray visualization, and injection rate. Diesel-Water Emulsion fuel has less injection quantities compared to diesel fuel, and spray penetration length is more longer than diesel. Furthermore, emulsion fuels have less dispersed than diesel fuel. In conclusion, comparing with diesel fuel with only spray characteristics, Diesel-Water Emulsion fuel has bad effects about dispersion and vaporization.

A Study on the Measurement Technique for Injection Rate and the Effects of the Nozzle Hole Number on Injection Characteristics (디젤 인젝터의 분사율 측정 기술과 분공수 변화가 분사특성에 미치는 영향에 관한 연구)

  • 이기형;정재우;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • Recently, many researches for the improvement of DI diesel engines have been performed to reduce the fuel consumption and exhaust emissions. Among the various factors effect on combustion and emission in Dl diesel engines, one of the most important factors is the characteristics of the fuel spray. Accordingly, the investigation on the characteristics of spray is needed to analyze the diesel combustion exactly, In this study, the measurement technique fur injection rate using the Zeuch method was developed. In addition, the effects of nozzle hole number on the spray and flame were investigated by visualization experiment.

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.