• Title/Summary/Keyword: Diesel fuel droplet

Search Result 82, Processing Time 0.016 seconds

A Study on an Atomization Model of a High-Pressurized Liquid Jet with a Stability Theory (안정성 이론을 이용한 고압 분사 액체 제트의 미립화 모델에 관한 연구)

  • Kim, Hong-Seok;Seong, Nak-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.811-818
    • /
    • 2001
  • The wave characteristics for a non-reacting high-speed liquid jet were investigated using a linear stability theory. In this study, 2-D incompressible viscid momentum equation for a liquid jet was considered, and the effects of injection parameters, such as Weber number, Reynolds number, and density ratio, on the wave characteristics were investigated. With the wavelength obtained from the stability analysis, the atomization model was suggested. The droplet sizes after breakup were determined by the wavelengths of fast growing waves, and the mass of the shed droplets was determined by the breakup time derived by ORouke et al. It was found that in comparison with measurements of diesel fuel spray, the results of calculation had a similar trend of the decrease of overall SMD with the increase of Reynolds number.

Numerical Study on the Effect of the Wall Curvature on the Behaviors of the Impinging Sprays (충돌분무의 거동에 미치는 벽면곡률의 영향에 대한 수치해석 연구)

  • 고권현;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • In this paper a numerical study was performed for the effect of the wall curvature on the behaviors of fuel sprays impinging on the concave Surface. Actually, in the real diesel engines, a piston head has a curved shape for the purpose of the controlling the movement of fuel droplets and the mixture formation. For past decades, although many experimental and numerical works had been performed on the spray/wall impingement phenomena, the curvature effect of impinged wall was rarely investigated. The wall curvature affects on the behaviors of the secondary droplets generated by impingement and the concave wall obstructs the droplets to advance from the impinging site to outward. In present study, the simulation code was validated for the flat surface case and three cases of the different curvature were calculated and compared with the flat surface case for several parameters, such as the spray radius, the spray height and the position of vortex center of gas phase. The simulation results showed that the radial advance of the wall spray and the vortex is decreased with increasing the curvature. It was concluded that the curvature of the impinged wall significantly affects the behaviors of both the gas-phase and the droplet-phase.