• Title/Summary/Keyword: Diesel exhaust

Search Result 1,070, Processing Time 0.032 seconds

A Study on Characteristics for Exhaust Emission with Oxygenated Fuel in an Agricultural DI Diesel Engine (농업용 직접분사식 디젤기관에서 함산소연료 적용시 배기배출물 특성 연구)

  • Choi, S.H.;Oh, Y.T.;So, J.D.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2007
  • In this study, the potential possibility of oxygenates on di-ether group (DBE, dibutyl ether) was investigated as an additives for an agricultural direct injection diesel engine. It tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenates additives blending fuel which has four kinds of mixed ratio. The smoke emission of blending fuel (diesel fuel 80 vol-% + DBE 20 vol-%) was reduced in comparison with diesel fuel, that is, it was reduced approximately 26% at 2500 rpm, full load. And, power, torque and brake specific energy consumption didn't have large differences. But, NOx emission of blended fuel was increased compared with commercial diesel fuel.

The Use of methanol in Diesel Engines (디이젤기관에 있어서 매타놀의 사용)

  • ;Yoo, Byung Chul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1979
  • Methanol was examined as supplemental fuel for open chamber type and pre-combustion chamber type diesel engine. Pre-determined quantities of diesel oil were injected as ordinary diesel engines and methanol was added at inlet pipe using venturi, nozzel and and float chamber for the rest of the charge. In this mode of operation, addition of methanol reduced inlet and exhaust temperature. Inlet air quantities were essentially unchanged in spite of lower inlet temperature. Exhaust smoke was significantly reduced At light load when both diesel oil and methanol were introduced with small quantities, specific heat consumption was considerably increased. However, with the increase of the quantity of methanol or diesel oil, specific heat consumption was improved. With sufficient quantities of diesel oil enough to produce the power above 3/4 load, addition of methanol showed better thermal economy.

The Emission Characteristics on Blending Ratios of Biodiesel Fuel and Diesel Fuel in a Common Rail Type Diesel Engine (커먼레일방식 디젤기관의 경유와 바이오디젤유의 혼합율에 따른 배기배출물 특성)

  • Choi, S.H.;Oh, Y.T.;Byeon, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2009
  • Our nature is facing with serious problems related to the air pollution from automobiles in these days. Specially, the exhaust emissions from the diesel engine are recognized as a main cause influencing the environment severly. In this study, the potential possibility of biodiesel fuel is investigated as an alternative fuel for a naturally aspirated CRDi type diesel engine. The smoke emission of biodiesel fuel 5 vol-% was reduced by approximately 40% at 3000 rpm and full load in comparison with diesel fuel. On the other hand, the power, torque and brake specific energy consumption didn't show significant differences. NOx emission of biodiesel fuel was, however, increased compared with commercial diesel fuel.

Development of Conversion Technology of a Decrepit Diesel Vehicle to the Dedicated Natural Gas Vehicle (노후 디젤차량으로부터 전소 천연가스자동차로의 개조 기술 개발)

  • Ryu, Kyung-Hyun;Kim, Bong-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.73-81
    • /
    • 2006
  • A commercial diesel engine was converted into a dedicated natural gas engine to reduce the exhaust emissions in a retrofit of a diesel-fueled vehicle. The cylinder head and piston were remodeled into engine parts suited for a spark ignition engine using natural gas. The remodeling of the combustion chamber changed the compression ratio from 21.5 to 10.5. A multi-point port injection(MPI) system for a dedicated natural gas engine was also adopted to increase the engine power and torque through improved volumetric efficiency, to allow a rapid engine response to changes in throttle position, and to control the precise equivalence ratio during cold-start and engine warm-up. The performance and exhaust emissions of the retrofitted natural gas engine after remodeling a diesel engine are investigated. The emissions of the retrofitted natural gas engine were low enough to satisfy the limits for a transitional low emission vehicle(TLEV) in Korea. We concluded that a diesel engine can be effectively converted into a dedicated natural gas engine without any deterioration in engine performance or exhaust emissions.

Effects of Pilot Injection on Low Temperature Diesel Combustion (파일럿 분사가 저온 디젤 연소에 미치는 영향)

  • Han, Sang-Wook;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.141-147
    • /
    • 2012
  • A direct injection diesel engine with large amount of exhaust gas recirculation was used to investigate low temperature diesel combustion. Pilot injection strategy was adopted in low temperature diesel combustion to reduce high carbon monoxide and hydrocarbon emissions. Combustion characteristics and exhaust emissions of low temperature diesel combustion under different pilot injection timings, pilot injection quantities and injection pressures were analyzed. Retarding pilot injection timing, increasing pilot injection quantity and higher injection pressure advanced main combustion timing and increased peak heat release rate of main combustion. As a result of these strategies, carbon monoxide and hydrocarbon emissions were reduced. Soot emission was slightly increased with retarded pilot injection timing while the effect of pilot injection on nitrogen oxides emission was negligible under low combustion temperature condition. Spatial distribution of fuel from the spray targeting visualization was also investigated to provide more insight into the reason for the reduction in carbon monoxide and hydrocarbon emissions.

A Study on the Exhaust Reduction of Diesel Particulates Using Ceramic Fiber Filters (세라믹 섬유필터를 이용한 디젤 입자상물질 배출저감에 관한 기초연구)

  • 주용남;홍민선;문수호;이동섭;임우택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.297-306
    • /
    • 2003
  • Works were focused on back pressure characteristics of ceramic fiber filter on DPF (Diesel Particulate Filter) system and experiments were performed to select appropriate filter which can filter particulates. Filters were installed on metal -support tube which has openings for exhaust gas flow. Ceramic fiber filters with high specific surface area and adequate high temperature strength are commercially available for filtration of diesel particulates and in -situ hot regeneration. Thus, ceramic blanket and ceramic board which are used as insulating media were applied to filter and filtration apparatus was installed on exhaust gas line connected to 2.0 L diesel engine. Alternating filter structure to adapt DPF system, collection efficiency test of diesel particulates was measured. In case of ceramic blanket, pressure drop was low, caused by the destruction of soft structures. Also, particulate collection efficiency was decreased depending on loading time. In case of ceramic board, structure design was altered to reduce back pressure on DPF system. Structure design was altered to induce Z-flow by making 10 mm and 5 mm holes on the surface of media. Alteration of 5 mm hole showed that media have low back pressure but particulate collection efficiency was 77%, while 10 mm hole showed that of 90%.

A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk;Oh, Sang-Ki;Kang, Kum-Won;Ahn, Kyun-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

Study on the Characteristics of Exhaust Emissions in accordance with the Intake Manifold and Fuel Injector Maintenance of the Electronic Control Diesel Engine (전자제어 디젤엔진의 흡기 다기관 및 연료분사장치 정비에 따른 매연 배출특성에 관한 연구)

  • Kang, Hyun-Jun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.196-205
    • /
    • 2016
  • The exhaust gas discharged by cars not only threatens the health of the human body, but also contributes to global warming, due to the resulting increase in the concentrations of ozone, fine dust and carbon dioxide. Therefore, the government has steadily implemented careful inspection systems for exhaust emissions, in order to efficiently regulate the exhaust gas of cars. Studies on reducing the exhaust emissions of automobiles have been conducted in various fields, including ones designed to reduce the generation of HC, NOx, and $CO_2$ in the exhaust emission of vehicles. However, there have been insufficient studies on the reduction of the exhaust emission for old diesel vehicles. To develop careful inspection systems for the exhaust emissions of old diesel vehicles, studies on the reduction of the exhaust emissions and improvement of power are necessary by cleaning the carbon sediment in both the intake manifold and injector. Therefore, in this study, we analyzed and compared the amounts of gas emitted when simultaneously cleaning or not cleaning the intake manifold and injector of diesel automobiles with mileages over 80,000 km and operating periods over 5 years. The experimental results showed that in the case where the intake manifold and injector were simultaneously cleaned, there was a decline of 75.2% in the gas emission compared to the cases where only the manifold or injector is cleaned. Also, it was found that simultaneously cleansing the intake manifold and injector enabled the exhaust standard to be satisfied for less than 30% within 8.5 sec.