• Title/Summary/Keyword: Diesel engine model

Search Result 307, Processing Time 0.02 seconds

A Numerical Study on Effect of Variation of Injection Angle on the Emissions (디젤 엔진의 분사각 변화가 배기가스에 미치는 영향에 관한 수치해석적 연구)

  • Bae, Myung-Jik;Lee, Byoung-Hwa;Han, Dong-Sik;Jeon, Chung-Hwan;Chang, Young-June;Song, Ju-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3085-3089
    • /
    • 2008
  • In order to reduce NOx and Soot emissions simultaneously, characteristics of diesel spray and combustion were investigated by numerical simulation with StarCD in this paper. This work focuses on effect of Spin Injection. A simulation model of combustion, spray and emissions is developed for heavy duty marine diesel engine application. Simulation is performed with change of spray angle between first and second directions at fixed engine speed, injection timing, injection duration and etc. The results show that Spin Spray Injection method can reduce NOx emission. And the results show that the 1st injection considerably interfere with 2nd injection characteristics.

  • PDF

A Numerical Analysis on the Spray Characteristics at Different Injection System Parameters in a Common-rail Diesel Engine (연료분사계 변수의 변화에 따른 커먼레일 디젤엔진의 분무특성에 관한 수치적 분석)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This paper present the diesel spray characteristics at different injection system parameters in a HSDI diesel engine. The spray characteristics was calculated by the coupled simulation of fuel injection system model and three-dimensional KIVA-3V code with TAB spray model. The relevant injection parameters are accumulator volume, control chamber initial volume, control orifice diameter, needle valve diameter and nozzle chamber initial volume, etc. Parametric investigation with respect to twelve relevant injection parameters showed that there was a significant advantage in varying control chamber initial volume, control chamber orifice diameter, and nozzle chamber orifice diameter with respect to effect the SMD and fuel injection speed. Consequently, in order to design the fuel injection system for spray characteristics, it seems reasonable to suppose to be optimized the fuel injection system.

Modeling of Diesel Spray Impingement on a Flat Wall

  • Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.796-806
    • /
    • 2000
  • To understand the transient behavior of droplets after impingement in a diesel engine, a numerical model for diesel sprays impinging on a flat wall is newly developed by the proposition of several mathematical formulae to determine the post-impingement characteristics of droplets. The new model consists of three representative regimes such as rebound, deposition and splash. The gas phase is modeled in terms of the Eulerian conservation equations, and the dispersed phase is calculated using a discrete droplet model. To validate the new model, the calculated results are compared with several experimental data. The results show that the new model is generally in good agreement with the experimental data. Therefore, it is thought that the new model is acceptable for the prediction of transient behavior of wall sprays.

  • PDF

The Effect of EGR Pipe Configuration on EGR Characteristics of Diesel Engine with Variable Geometry Turbocharger (EGR관 형상이 가변형상 과급기를 장착한 디젤엔진의 EGR 특성에 미치는 영향)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Jeong-Ho;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.65-73
    • /
    • 2007
  • The use of an Exhaust Gas Recirculation(EGR) for a diesel engine with variable geometry turbocharger(VGT) has confronted how to obtain the amount of EGR for NOx reduction requirement at wide operating range and less side effect. Through a combined effort of modeling(wave action simulation) and experiment, an investigation into the effect of EGR area ratio and pipe length on EGR characteristics of common rail diesel engine with VGT has been performed. For accurate computation, calibration of constants involved in empirical and semi-empirical correlations has been performed at a specific operating point, before of its use for engine simulation. From the results of this study, it was found that EGR rate is sharply increased with increasing EGR area ratio until area ratio of 0.3. However, the effect of EGR area ratio on EGR rate is negligible beyond this criteria. This study also investigates the effect of EGR pipe length on a EGR amount and pulsating flow characteristics at EGR junction. The results showed that the longer EGR pipe length, the lower EGR amount was achieved due to the flow loss resulting in lower amplitude of pressure wave.

An Experimental Study on the Performance Improvement and Emission Reduction in a Turbocharged D.I. Diesel Engine (과급식 디젤엔진의 성능개선 및 배기가스 저감에 관한 실험적 연구)

  • 윤준규;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.36-46
    • /
    • 2000
  • The performance improvement and emission reduction in a turbocharged D.I. diesel engine was studied experimentally in this paper. The system of intake port, fuel injection and turbochager are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. Through these experiments it can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, fuel injection system and turbocharger. The swirl ratio of intake port was modified by hand-working and measured by impulse swirl meter. Through this steady flow test, we knew that the increase of swirl ratio is decreasing the mean flow coefficient, whereas the gulf factor is increasing. And the optimum results of engine performance and emission are as follows; the swirl ratio is 2.43, injection timing is BTDC 13。 CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 AND turbine A/R 1.19.

  • PDF

A Prediction of DI Diesel engine Performance using the Multizone Model (Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구)

  • ;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

Mathematical Analysis and Simulation on a Wall-Flow Ceramic Monolith filter trap in CI Engine (CI기관의 벽유동 세라믹 모노리스 필터트랩에 관한 수학적해석 및 시뮬레이션)

  • Han, Y.C.;Choi, K.H.;Bang, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.58-65
    • /
    • 1994
  • In order to reduce particulate emissions from diesel vehicles, mathematical model is established and analyzed on ceramic wall-flow monolith filter. A wall-flow monolith filter placed in the exhaust stream of a diesel engine can effectively limit the emission of diesel particulates through the monolith. The accumulated particulates can then be periodically combusted inside the monolith by directing hot gas to the monolith while normal engine exhaust is routed around the monolith system. The resulting low flow rates through the monolith require consideration of gas dynamics through the channels as well as particulate combustion to analyze this regeneration process. A mathematical model of the regeneration is formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy. Numerical solutions are obtained by using a finite difference techniques for the spatial discretization. So we can use filter simulation program for the purpose of filter design and actual filter regeneration

  • PDF

Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines

  • Kim, Yong-Mo;Lee, Joon-Kyu;Ahn, Jae-Hyun;Kim, Seong-Ku
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.1009-1018
    • /
    • 2002
  • The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOx formation including thermal NO path, prompt and nitrous 70x formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.

Study on the Vibration of Diesel Engine Generator of Drill Ship (드릴쉽 디젤엔진 발전기의 진동에 관한 연구)

  • Jin, Bong-Man;Park, Hyung-Sik;Kong, Yong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.502-508
    • /
    • 2009
  • To obtain high power, diesel engines continuously increase combustion pressure and mean effective pressure each cylinder, and the excitation sources and noisy sources are increased, too. Moreover, to reduce the costs, shipyards make hull structures weaker than before. As above reasons, it is more difficult to control the vibration phenomenon nowadays. In this study, it was investigated why diesel generator sets reached the vibration allowable limits during the FAT and heavy vibration phenomenon of diesel generator sets using ODS test during onboard tests. Also, it is found out the stiffness of deck and common bed using the test result of their structural impedance. To find out the vibratory characteristics of diesel generator sets, model tests were carried out. From the sensitivity analysis after above tests, it was selected points to be reinforced and studied troubleshooting to solve heavy vibration phenomenon of diesel generator sets.

Measurement and Assessment on the Shaft Power Measurement of Diesel Engine using Strain Gauge in Marine Vessel (선박에서 스트레인 게이지를 이용한 디젤엔진의 축 동력 측정과 평가)

  • Lee, Don-Chool;Song, Myong-Ho;Kim, Sang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1152-1161
    • /
    • 2009
  • The power measurement of main propulsion system on the new vessels can be classified with the direct method acquired from the shaft's strain using strain gauge and the indirect method converted and summed from all of cylinders combustion pressure using mechanical or electrical pickup device during the sea trial. This power is fluctuated by external factors which was influenced by various sea motions with long time interval and by internal factors which was influenced by varying torques of torsional vibration and bending moment, due to mis-aligned shaft and whirling vibration with short time interval. In this paper, the statistical analysis method for the shaft power measurement and assessment using strain gauge in marine vessels are introduced. And these are identified by the low speed two stroke diesel engine model and four stroke medium speed diesel engine model including reduction gear.