• 제목/요약/키워드: Diesel engine model

검색결과 307건 처리시간 0.028초

모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어 (An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

선박용 디젤기관의 지능적인 속도제어시스템 (An intelligent Speed Control System for Marine Diesel Engine)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.320-327
    • /
    • 1998
  • The purpose of this study is to design the intelligent speed control system for marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. Recently for the speed control of a diesel engine some methods using the advanced control techniques such as LQ control Fuzzy control or H$\infty$ control etc. have been reported. However most of speed controllers of a marine diesel engine developed are still using the PID control algorithm But the performance of a marine diesel engine depends highly on the parameter setting of the PID controllers. The authors proposed already a new method to tune efficiently the PID parameters by the Model Mathcing Method typically taking a marine diesel engine as a non-oscillatory second-order system. It was confirmed that the previously proposed method is superior to Ziegler & Nichols's method through simulations under the assumption that the parameters of a diesel engine are exactly known. But actually it is very difficult to find out the exact model of the diesel engine. Therefore when the model and the actual diesel engine are unmatched as an alternative to enhance the speed control characteristics this paper proposes a Model Refernce Adaptive Speed Control system of a diesel engine in which PID control system for the model of a diesel engine is adopted as the nominal model and a Fuzzy controller is adopted as the adaptive controller, And in the nominal model parameters of a diesel engine are adjusted using the Model Matching Method. it is confirmed that the proposed method gives better performance than the case of using only Model Matching Method through the analysis of the characteristics of indicial responses.

  • PDF

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권7호
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

디젤기관의 on-line 파라미터 추정에 의한 적응 속도제어 (An Adaptive Speed Control of a Diesel Engine by Means of the On-line Parameter Estimate)

  • 유희한;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.20-26
    • /
    • 1996
  • Recently, for the speed control of a diesel engine, some methods using the modern control theory such as LQ control technique, or $\textit{H}_{\infty}$control theory etc., have been reported. However, most of speed controlers of a diesel engine ever developed are still using the PID control algorithm. And, as another approach to the speed control of a diesel engine, the authors proposed already a new method to adjust the parameters of the PID controller by a model matching method. In the previous paper, the authors confirmed that the proposed new method is superior to Ziegler & Nichols's method through the analysis of results of the digital simulations under the assumption that the parameters of a diesel engine are known exactly. But, actually, it is very difficult to find out the value of parameters of a diesel engine accurately. And the parameters of a diesel engine are changigng according to the operating condition of a diesel engine. So, in this paper, a method to estimate the parameters of the PID controller for the speed control of a diesel engine by means of the model matching method are proposed. Also, the digital simulations are carried out in cases either with or without measurement noise. And this paper confirms that the proposed method here is superior to Ziegler & Nichols's method through the analysis of the characteristics of indicial responses.

  • PDF

모델 맷칭법에 의한 디젤기관의 속도제어 (Speed Control of a Diesel Engine by Means of the Model Matching Method)

  • 유희환;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.131-137
    • /
    • 1996
  • The existing digital governors are in the beginning stage. Placing the focus on the marine site, most of the digital governors developed are still using the simple PID algorithm. But, the performance of a diesel engine is widely changed according to the parameters of the PID controller. So, this article describes a new method to adjust the parameters of the PID controller in a marine digital governor. In this paper, the diesel engine is considered as a nonoscillatory second order system. A new method to adjust the parameters of the PID controller for speed control of a diesel engine is proposed by means of the model matching method. Also, the simulations by numerical methods are carried out in cases of the exact understanding or out of the parameters of a diesel engine respectively. And this paper confirms that the proposed new method here is superior to Ziegler & Nichols's method through the comparisons and analysis of the characteristics of indicial responses.

  • PDF

평균값 모델을 활용한 WGT 디젤엔진의 과급압력 및 EGR율 보정 방법 개발 (Development of the Calibration Method for the Boost Pressure and EGR Rate of a WGT Diesel Engine Using Mean Value Model)

  • 정재우;김남호;임창현;김덕진;김기용
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.319-329
    • /
    • 2016
  • Globally, many researchers have been trying to improve the fuel economy of a vehicle for satisfying future $CO_2$ regulation and minimizing air pollution problem. For the same background, diesel engine and vehicle system optimization using simulation models have been key technologies for the improvement of vehicle system efficiency. Therefore, in this study, calibration method for the air breathing system of a WGT diesel engine using mean value model has been composed for efficient engine and vehicle optimization simulation researches. And virtual WGT performances have been calculated for a 2 cylinder downsized diesel engine system. From these researches, the calibration method for the boost pressure and EGR rate of a virtual diesel engine related with WGT performances could be composed and some of technical issue related with downsized diesel engine could be investigated.

A Diesel Generator Model with Fluctuating Engine Torque Including Magnetic Saturation for Transient Analysis using XTAP

  • Sakamoto, Orie
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1298-1303
    • /
    • 2015
  • Diesel engine generators are widely used in the world, especially in remote site power systems as distributed generators. A weak distribution feeder with a small diesel engine may suffer from voltage and power fluctuations due to misfiring of the engine cylinder. In this study, new generator model with example engine torque was developed for the electromagnetic transient analysis program for power systems named XTAP. The configuration and verification results of the developed model are presented in the paper. The model is considered to be useful for analyses of small power systems with those diesel engines.

CGI를 이용한 대형 디젤엔진의 구조해석 (Structural Analysis on the Heavy Duty Diesel Engine with Compacted Graphite Iron)

  • 이재옥;이영신;이현승;김재훈;전준탁;김철구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.602-607
    • /
    • 2007
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness and fatigue. In this study, three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The FE model of the heavy duty diesel engine section consisting with four half cylinder was selected. The heavy duty diesel engine section include cylinder block, cylinder head, liner, bearing cap, bearing and bolt. The loading conditions of engine are pre-fit load, assembly force and gas force.

  • PDF

Simulation of a two-stroke diesel engine for propulsion in waves

  • Yum, Kevin Koosup;Taskar, Bhushan;Pedersen, Eilif;Steen, Sverre
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.351-372
    • /
    • 2017
  • Propulsion in waves is a complex physical process that involves interactions between a hull, a propeller, a shaft and a prime mover which is often a diesel engine. Among the relevant components, the diesel engine plays an important role in the overall system dynamics. Therefore, using a proper model for the diesel engine is essential to achieve the reasonable accuracy of the transient simulation of the entire system. In this paper, a simulation model of a propulsion system in waves is presented with emphasis on modeling a two-stroke marine diesel engine: the framework for building such a model and its mathematical descriptions. The models are validated against available measurement data, and a sensitivity analysis for the transient performance of the diesel engine is carried out. Finally, the results of the system simulations under various wave conditions are analyzed to understand the physical processes and compare the efficiency for different cases.

디젤 매연 필터에서 퇴적되는 입자상 물질의 퇴적량 예측 (Prediction of Particulate Matter Being Accumulated in a Diesel Particulate Filter)

  • 유준;전제록;홍현준
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.29-34
    • /
    • 2009
  • Diesel particulate filter (DPF) has been developed to optimize engine out emission, especially particulate matter (PM). One of the main important factors for developing the DPF is estimation of soot mass being accumulated inside the DPF. Evaluation of pressure drop over the DPF is a simple way to estimate the accumulated soot mass but its accuracy is known to be limited to certain vehicle operating conditions. The method to compensate drawback is adoption of integrating time history of the engine out PM and burning soot. Present study demonstrates current status of the soot estimation methods including the results from the engine test benches and vehicles.