• 제목/요약/키워드: Diesel engine management system

검색결과 40건 처리시간 0.029초

건설기계 디젤엔진용 실시간 시뮬레이터 개발 (Development of Real-Time Simulator for a Heavy Duty Diesel Engine)

  • 노영창;박경민;오병걸;고민석;김낙인
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.203-209
    • /
    • 2015
  • 건설기계 산업에서 배기 및 연비 규제를 만족하기 위하여 엔진 시스템이 점차 전자제어화 되고 있으며, 이를 제어하기 위한 EMS(Engine Management System)의 복잡도 또한 증가하고 있다. 본 연구에서는 EMS function 개발 시, 비용 및 개발기간의 단축을 위한 HiLS(Hardware in the Loop Simulation) 시스템을 개발하였다. HiLS 에 내장된 엔진 모델은 크게 Air, Fuel, Torque 및 동력계 모델로 구성되어있고 실시간 엔진 모사를 위하여 Mean value modeling 방법을 적용하였다. 이 연구를 통하여 개발한 HiLS 시스템은 EGR(Exhaust Gas Recirculation) 시스템과 Turbocharger 가 장착된 건설기계용 디젤엔진을 이용하여 정확성을 검증하였고, 테스트 결과 실 엔진 대비 90% 이상의 정확도를 얻었다.

건설기계용 저온연소 엔진시스템 개발 (Development of Low Temperature Diesel Combustion Engine for Construction Equipments)

  • 심의준;김득상;이동인;박용희
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.83-88
    • /
    • 2014
  • LTC(Low Temperature Combustion) technology has been studied to see feasibility of the combustion technology applied to heavy-duty engines on the laboratory scale. This study succeeded to develop a demo engine including realized low temperature combustion under partial load conditions. To find the best feasible LTC strategy, various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. Air management system was re-designed to make these combustion scheme stable and the re-designed air system helped expand LTC operating range. This study finally revealed plausible LTC concept to maximize benefit of the alternative combustion technology while overcoming handicaps of the LTC strategy.

군용차량을 위한 디젤기관의 방산기술 식별기준 정립에 관한 연구 (A Study on Establishment of Criteria to Identify the Defense Industrial Technology of Diesel Engine for Military Vehicle)

  • 윤흥수;류연승
    • 한국융합학회논문지
    • /
    • 제10권3호
    • /
    • pp.177-184
    • /
    • 2019
  • 방산기술이 복제되거나 방해기술이 발달되어 그 가치와 효용이 낮아지는 것을 방지하고 부적절한 수출을 방지하기 위한 보호가 필요하여 2015년도에 방위산업기술보호법이 제정되었다. 방산기술이란 방위산업과 관련된 국방과학기술 중에서 국가안보를 위하여 보호되어야 하는 기술을 의미한다. 그러나 현재 방산기술 보호체계 중에서 보호대상 기술의 식별 및 관리 체계의 기술식별 기준이 법규화 되어 있지 않다. 이에 본 연구에서는 델파이 설문을 통하여 141개 방산기술 중에서 고효율 내연기관 추진 기술과 관련 있는 디젤기관 요소기술 식별기준을 정립하고 방산기술 보호체계 중 보호대상 기술의 식별 및 관리 체계를 개선하였다. 연구결과로 디젤기관 요소기술 식별기준으로 작전 운용성, 내구성, 안전성, 계열화 및 모듈화 등을 정립하였다.

노후 경유자동차의 천연가스 자동차로의 개조기술 개발 (Engine Management System remodeling from diesel to CNG system on used diesel truck(3.3L))

  • 이중성;김봉규;채정민;한정옥;나평철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3335-3340
    • /
    • 2007
  • The government have been tightening EM regulation gradually but the effect is not good because of rapid increase of vehicles. And medium & heavy duty diesel vehicles, even though the number is small, exhaust very large pollutants(about over 50%). Especially it is more severe about old trucks and buses. Accordingly, CNG vehicle and the retrofit of diesel to CNG must be an alternative in order to protect the atmospheric environment and improve the air quality in the metropolitan area. The main object of this study is to secure the retrofit technology of diesel to CNG vehicle and the management system of CNG engine. we passed the government emission certification test. In addition to this, the mass production for retrofit is also studied. Results of emission and durability test for certification are as follows; there was no problem during 30,000km vehicle durability test and good emission levels satisfying the regulation.

  • PDF

특성곡선법을 이용한 디젤엔진 가스유동 1차원 수치해석의 타당성 평가 (Validation of diesel engine gas flow one-dimensional numerical analysis using the method of characteristics)

  • 김경현;공경주
    • 수산해양기술연구
    • /
    • 제56권3호
    • /
    • pp.230-237
    • /
    • 2020
  • In order to design a diesel engine system and predict its performance, it is necessary to analyze the gas flow of the intake and exhaust system. A gas flow analysis in three-dimensional (3D) format needs a high-resolution workstation and enormous time for analysis. Therefore, the method of characteristics (MOC) was used for a gas flow analysis with a fast calculation time and a low-resolution workstation. An experiment was conducted on a single cylinder diesel engine to measure pressure in cylinder, intake pipe and exhaust pipe. The one-dimensional (1D) gas flow was analyzed under the same conditions as the experiment. The engine speed, valve timing and compression ratio were the same conditions and the intake pressure was inputted as the experimental results. Bent pipe such as an exhaust port that cannot be realized in 1D was omitted. As results of validation, the cylinder pressure showed accuracy, but the exhaust pipe pressure exhibited inaccuracy. This is considered as an error caused by the failure to implement a bent pipe such as an exhaust port. When analyzed in 3D, calculation time required 61 hours more based on a model of this study. In the future, we intend to implement a bent pipe that cannot be realized in 1D using 3D and prepare a method to supplement reliability by using 1D-3D coupling.

디젤엔진용 연료분사장치 제조업체의 근골격계 질환 유해요인 조사 사례연구 (Case Study of Diagnosis on Musculoskeletal Disorders Risk Factors at an Diesel Engine Fuel Injection System Manufacturing Company)

  • 양성환;조문선;강영식
    • 대한안전경영과학회지
    • /
    • 제11권2호
    • /
    • pp.59-67
    • /
    • 2009
  • The goal of this study is to propose the effective method of investigating the injurious factors and making improved plans that prevents the workers against musculoskeletal disorders at an diesel engine manufacturing company and the same business field with similar working conditions and process. A questionnaire were adopted to analyze the symptoms of workers' musculoskeletal disorders, and an ergonomic assessment method such as RULA, OWAS were performed to find out harmful factors of workplace and working posture. Based on the result of the evaluation, to enhance the working environment, improvement of worktable, working space, tools, and outfit was suggested, and induction of mechanical system was also suggested. It can be concluded that the method and process described in this paper could be helpful for diagnosing the musculoskeletal disorders and making improvement plans to the diesel engine fuel injection system manufacturing company and the same business field with similar working conditions and process.

디젤엔진 배기가스의 저감에 관한 연구 (A Study on the Reduction of Diesel-Engine Emissions)

  • 허윤복;정순석;김광수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF

EGR Cooler system을 장착한 건설기계용 대형디젤엔진의 성능에 관한 연구 (A Study on Characteristics of Performance by Heavy-Duty Diesel Engine on Construction Machine with EGR Cooler System)

  • 오상기;김진열;이승호;송호영
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.130-135
    • /
    • 2013
  • It is a research about the change in reduction efficiency and performance resulting from installation of the EGR cooler, which is the core technology reducing NOx in response to standards been tightened of exhaust controls for off-road vehicle. It can reduce NOx by altering combustion temperature and oxygen concentration by recycling high-temperature exhaust gas. The target engine was large diesel engine for construction machine through by which we were able to verify a rate of change in output and capabilities for a heat-exchange within cooler itself depending on the existence of EGR cooler system. We have acquired a emission reduction technology for a construction machine by testing the reduction performance and rate of change in output.

자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구 (A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System)

  • 이진욱;조규백;김홍석;정용일
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

배기가스 재순환장치 효율 증대 방안 (The Plan to Increase Efficiency of Exhaust Gas Recirculation System)

  • 김광수;정순석;허윤복
    • 대한안전경영과학회지
    • /
    • 제16권3호
    • /
    • pp.185-194
    • /
    • 2014
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study: 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system. 2. Reducing malfunction of controlling emission gas. 3. Made possible precision control.