• Title/Summary/Keyword: Diesel engine exhaust gas emission

Search Result 285, Processing Time 0.021 seconds

An Experimental Study on the Smoke Reduction System of the Exhaust Gas Suction Type (배기 흡입형 매연저감장치에 관한 실험적 연구)

  • Ki, Si-Woo;Choi, Sang-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.833-839
    • /
    • 2010
  • Over the past years, many research works have been carried out to investigate the factors which govern the performance of diesel engine. The air pollutant emission from the diesel engine is still a significant environmental concern in many countries. In the present study, new system of smoke reduction of diesel engine is proposed. This new system is using vacuum equipment for capture smoke. To confirm new system experiments were performed at engine dynamometer. As a result of this experiment, the smoke reduction of this system was identified.

Effects of Swirl Ratio on Combustion Characteristics in DI Diesel Engine (스월비 변화가 직접분사식 디젤기관의 연소특성에 미치는 영향)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.149-153
    • /
    • 2003
  • Besides the fuel spray behavior and combustion chamber shape. an air motion has a key role on exhaust gas emission and performance in a DI diesel engine. A swirl ratio represents the ratio of the intake swirl velocity to the engine speed. The main purpose in this work is to investigate the effects of the swirl ratio to the combustion characteristics. A shroud valve machined to change the swirl ratio. Test was carry out by changing the engine speed, nozzle diameter and swirl ratio in a single cylinder diesel engine. From this study, the optimized combustion was found at swirl ratio 2.7. And it was also found that the increasing the maximum cylinder pressure with an increasing swirl ratio lead to decrease a smoke and to increase NOx.

  • PDF

The Performance Test of SCR System in a Heavy-Duty Diesel Engine (대형디젤기관에 적용된 선택적 환원촉매장치 성능시험에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2008
  • Selective Catalytic Reduction is effective in the reduction of NOx emission. This research focused to evaluate the performance of a urea-SCR system and was conducted in two procedures. One is SCR reactor test using model gas in order to provide an optimal injection condition itself. In this step, some parametric study on emission temperature, space velocity, aspect ratio and the formation of urea spray were made by using flow visualization and Computation Fluid Dynamics techniques. The basic simulation results contributed in determining the layout for an actual engine test. The other is an engine performance and emission test. The urea injector was placed at the opposite direction of exhaust gases emitted into an exhaust duct and an optimal amount of a reducing agent is estimated accurately under different engine loads and speeds. Furthermore, the variation of NOx emission and applied amount of urea was investigated in terms of modes under the condition of with and without SCR, and other emissions such as PM, CO and NMHC were evaluated quantitatively as well. This research may provide fundamental data for the practical use of urea-SCR in future.

Influence of fuel injection pattern on combustion and emissions characteristics of diesel engine by using emulsified fuel applied with EGR system (에멀젼연료와 EGR의 동시적용 디젤엔진에 있어서 연료 분사 패턴이 연소와 배기가스에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1064-1069
    • /
    • 2014
  • The use of emulsified fuel and EGR (Exhaust gas recirculation) system are effective methods to reduce NOx emission from diesel engines. In general, it is considered that EGR method influences diesel engine combustion in three different ways: thermal, chemical and dilution effect. Among others, the thermal effect is related to the increase of specific heat capacity due to the presence of $CO_2$ and $H_2O$ in inlet air. Meanwhile, emulsified fuel method of utilizing latent heat of vaporization and miro-explosion has been recognized as an effective technique for reducing diesel engine emissions. In this paper, an author studied on combustion and emission characteristics by using emulsified fuel (EF, Light oil : 80% + Water : 20%) and EGR (30% EGR ratio) system. And the effect of fuel injection pattern control was investigated.

Effects of Injector Design Parameter on Nozzle Coking in Diesel Engines (디젤 엔진의 인젝터 설계 변수가 노즐 코킹에 미치는 영향 분석)

  • Kim, Yongrae;Song, Hanho
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.140-145
    • /
    • 2012
  • Recent common-rail injector of a diesel engine needs more smaller nozzle hole to meet the stringent emission regulation. But, small nozzle hole diameter can cause nozzle coking which is occurred due to the deposits of post-combustion products. Nozzle coking has a negative effect on the performance of fuel injector because it obstructs the fuel flow inside a nozzle hole. In this study DFSS (Design for six sigma) method was applied to find the effect of nozzle design parameter on nozzle coking. Total 9 injector samples were chosen and tested at diesel engine. The results show that nozzle hole diameter and K-factor have more effect on nozzle coking than A-mass and hole length. Large hole diameter and A-mass, small hole length and K-factor give more positive performance on nozzle coking in these experimental conditions. But, a performance about nozzle coking and exhaust gas emission shows the opposite tendency. Further study is needed to find the relation between nozzle coking and emission characteristic for the optimization of injector nozzle design.

COMBUSTION STABILITY OF DIESEL-FUELED HCCI

  • Shi, L.;Deng, K.;Cui, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Homogeneous Charge Compression Ignition (HCCI) shows great potential for low $NO_x$ emission but is hampered by the problem of no direct method to control the combustion process. Therefore, HCCI combustion becomes unstable easily, especially at lower and higher engine load. This paper presents a method to achieve diesel-fueled HCCI combustion, which involves directly injecting diesel fuel into the cylinder before the piston arrives at top dead center in the exhaust stroke and adjusting the valve overlap duration to trap more high temperature residual gas in the cylinder. The combustion stability of diesel-fueled HCCI combustion and the effects of engine load, speed, and valve overlap on it are the main points of investigation. The results show that: diesel-fueled HCCI combustion has two-stage heat release rate (low temperature and high temperature heat release) and very low $NO_x$ emission, combustion stability of the HCCI engine is worse at lower load because of misfire and at higher load because of knock, the increase in engine speed aids combustion stability at lower load because the heat loss is reduced, and increasing negative valve overlap can increase in-cylinder temperature which aids combustion stability at lower load but harms it at higher load.

A Study on Exhaust Gas of Diesel Engine with a ULSD, CR-DPF and EGR (ULSD, CR-DPF와 EGR을 적용한 디젤기관의 배출가스에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.85-90
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13modes. Through durability test on diesel particulate filter, regeneration characteristics and control technology on PM were investigated in overall.

Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine (와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선)

  • Lee, Chang-Kyu;Huh, Yun-Kun;Seo, Sin-Won
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

Effect of nozzle diameter on the reduction of smoke emission from naval ship diesel engines (함정용 디젤엔진의 노즐 직경 변화가 매연 발생에 미치는 영향)

  • Son, Min-Soo;Choi, Jae-Sung;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.180-184
    • /
    • 2016
  • Legislative and regulatory actions regarding the exhaust gas from ships are being strengthened by both international organizations and national governments, to protect human health and the environment. Exhaust gas traps are excluded from exhaust gas regulation applications, but, recently, the United States, Britain, and other developed countries have examined a variety of ways to improve the system, including the introduction of electric propulsion systems to prevent air pollution generated by naval ships. This study investigates a large number of smoke problems of naval diesel engines to verify the effect of improving the nozzle characteristics. An exhaust gas emission measurement method to determine the quality of pollutant exhaust gas generated during low-load operation is proposed through the research methodology of the smoke problem. It was confirmed that the emissions value is improved by decreasing the nozzle hole diameter and increasing the injection pressure. At the same time, the flow rate decrease equation and setting up a test memo based on the nozzle diameter confirmed that the fuel consumption, to which the nozzle diameter in the flow path is related, is reduced.

A study on Combustion and Exhaust Emission of Diesel Engine (디젤기관의 연소와 배출물에 관한 연구)

  • 조진호;김형섭;박정률
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.81-88
    • /
    • 1991
  • Combustion characteristic, concentration of NOx and exhaust smoke opacity was experimentally tested, according to fuel injection timing, mixing ratio of water and methanol for the driving condition of 2000 rpm of engine revolution and constant load(7.5kg/cm$^{2}$) using emulsified fuel of gas oil-water methanol. The result obtained was as following. Thermal efficiency indicated highly 0.4-2.7% for emulsified fuel then gas oil, and injection timing when maximum thermal efficiency, slicily risen then gas oil. For constant fuel injection timing ignition lag was increased, combustion duration decreased, maximum heat release rate indicated high, and concentration of NOx and exhaust smoke opacity is decreased, as function of water and methanol content y was higher.

  • PDF