• Title/Summary/Keyword: Diesel engine emission

Search Result 804, Processing Time 0.023 seconds

Experimental Study on Structure Characteristics of Particulate Matter emitted from Ship at Various Sampling Conditions (다양한 샘플링 조건에 따른 선박 배기가스 내 입자상물질의 구조 특성에 관한 실험 연구)

  • Lee, Won-Ju;Jang, Se-Hyun;Kim, Sung-Yoon;Kang, Mu-Kyoung;Chun, Kang-Woo;Cho, Kwon-Hae;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.547-553
    • /
    • 2016
  • Black carbon (BC) contained in particulate matter (PM) originating from the exhaust gases of ships' diesel engines has been receiving great attention as a cause of glacial melting and warming in the polar regions. In this study, we took samples from various locations of PM emitted from the training ship (T/S) HANBADA's main engine, in cooperation with the Korea Maritime and Ocean University. We analyzed the structure and characteristics of these samples using high-resolution transmission electron microscopy (HR-TEM) and applied our findings as fundamental research for developing PM reduction technology. We also employed our results to determine appropriate preemptive action to meet upcoming PM/BC regulations. In addition, we confirmed the emission trend of pollutants from exhaust gases under various engine operating conditions using an exhaust gas analyzer. Results obtained from the analysis of HR-TEM images showed that the structure of the PM is chain-like wispy agglomerates consisting of a number of individual spherical particles. As the sampling location was moved away from the turbo charger (T/C) towards the funnel, more condensates were observed at a low temperature and the molecular structure of the PM lost its characteristic BC structure as an amorphous structure gradually appeared. Furthermore, through the analysis of exhaust gases, we predicted a decrease in PM concentration in the exhaust stream as engine rpm increase.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

Development and performance evaluation of the porous tube dilutor for real-time measurements of fine particles from high humidity environments (고수분 환경에서 미세먼지 실시간 측정을 위한 다공 튜브형 희석장치의 개발 및 성능 평가)

  • Woo, Chang Gyu;Hong, Ki-Jung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;An, Jeongeun;Kang, Su Ji;Chun, Sung-Nam
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.105-110
    • /
    • 2017
  • Real-time measurements of fine particles from stack emission gases are necessary due to the needs of continuous environmental monitoring of PM10 and PM2.5. The porous tube dilutor using hot and cold dilutions was developed to measure fine particles without condensable particles from highly humid emission gases and compared to the commercialized ejector-type dilutor. Particle size distributions were measured at the emission gases from a diesel engine and a coal-fired boiler. The porous tube dilutor could successfully measure the accumulation mode particles including relatively large particles more than $3{\mu}m$ without nuclei particles, while the ejector dilutor detected some condensable particles and could not detect large particles. The porous tube dilutor could successfully remove the already condensed water droplet particles generated by a humidifier in a $30m^3$ chamber.

A Study on the Response Characteristics of a High Speed Solenoid (고속 솔레노이드의 응답특성에 관한 연구)

  • Cho, Kyu-Hak
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.142-151
    • /
    • 2000
  • The studies on the electronic control fuel injection system for a DI diesel engine have done for reducing the exhaust emission and improving fuel consumption. The electronic control fuel injection system is classified into a common rail system, a unit injector system and a high pressure injection system. The characteristics of these systems are largely depends on the operating characteristics of its solenoid that have high speed on-off operation. In order to improve these characteristics of fuel injection system, it is necessary to design the optimal shape of solenoid and select the input method of its power source. It was proposed HELENOID, COLENOID, DISOLE, and Multipole Solenoid in the studies of design for the optimal shape of solenoid. The studies on the energizing method, input method for power of solenoid were dealt with the conventional energizing method, the chopping method and the pre-energizing method. In order to find out the high response characteristics of solenoid, it is necessary to test the performance of optimally designed solenoid with a new energizing method. In this paper, the solenoid of multi-pole type with plat armature and its power control unit to control input current by the chopping method designed, and its response tests were performed according to its energizing conditions. As a result, the maximum input current for solenoid was controlled by the period of first stage exciting current and chopping duty ratio of control stage exciting current, and the fastest "on" time was able to get 0.46ms. The conditions of fastest "on" time was 0.3ms for first stage exciting current, 0.16ms for control exciting current and 75% for chopping duty ratio.

  • PDF

The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip (Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Park, Jung-Kwon;Lee, Ho-Kil;Oh, Se-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

Solution Combustion Synthesis of LaFeO3 Powders and Their Carbon Ignition Property (용액연소합성법을 이용한 LaFeO3 분말 합성 및 탄소 연소 특성)

  • Rang, Da-Sik;Lee, Tae-Kun;Hwang, Yeon;Bae, Kwang-Hyun;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.382-385
    • /
    • 2007
  • [ $LaFeO_3$ ] powders were prepared as the oxidation catalyst materials to reduce the emission of particulate matters from diesel engine and their catalytic effects on the oxidation of carbon were investigated. Solution combustion method was employed for the powder synthesis, which uses highly exothermic and selfsustaining reactions. In this study $LaFeO_3$ powders were synthesized at $400^{\circ}C$ as varying the ratio ($\Phi$) of fuel (citric acid) and oxidizer (metal nitrate), and their phase and carbon ignition property were examined. As $\Phi$ decreases, the crystallinity of synthesized $LaFeO_3$ powders enhanced. By calcining at $700^{\circ}C$, all the powders synthesized at various $\Phi$ fully crystallized. The calcined $LaFeO_3$ powders showed carbon ignition temperature as low as $501{\sim}530^{\circ}C$, which implied the decrease of the ignition temperature by $120{\sim}150^{\circ}C$.

A Study on the Production of Supporting Ring Using Casting for Public Environmental Vehicles (대중적 환경차를 위한 주조를 이용한 서포트링 제작에 관한 연구)

  • Jeongick Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.3
    • /
    • pp.17-24
    • /
    • 2023
  • I am designing a research paper with the aim of studying hybrid vehicles. Hybrid vehicles, as the next-generation automobiles, feature a combination of internal combustion engines and battery engines, resulting in a revolutionary reduction in fuel consumption and harmful gas emissions compared to conventional vehicles. The electric motor in hybrid cars derives power from a high-voltage battery installed within the vehicle, which is recharged during vehicle motion. In contrast to traditional cars, which often experience energy losses due to idling caused by traffic congestion, hybrid systems optimize efficiency by skillfully managing the interplay between the internal combustion engine and the electric motor. This approach effectively addresses the inherent drawbacks of gasoline or diesel engines.Hybrid cars offer an array of benefits, including improved fuel efficiency, environmental friendliness, cost-effectiveness, and reduced noise emission. Consequently, they are progressively becoming a favored alternative among a growing number of individuals. This research endeavor has the potential to contribute towards curbing environmental pollution and dedicating efforts to future automotive research.

Study on effect of fuel property change on vehicle important parts and exhaust gas (연료 물성 변화가 자동차 주요부품 및 배출가스에 미치는 영향 연구)

  • Lee, Jung-Cheon;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.866-873
    • /
    • 2017
  • Exhaust regulations of automobile are being reinforced increasingly as environmental problems issues came to the fore by industrial development. However, it is known that the exhaust emission is not only influenced by the system of automobile but also the fuel properties. In particular, high-performance engines have required high-performance fuels with high lubricity as CRDI engines(diesel engine) have been developed and commercialized. This paper have examined that the fuel property variations affect a major parts and an exhaust gas of automobile. It was confirmed that the high pressure pump, the injector and the DPF(diesel particulate filter) were damaged and fuel efficiency was get worse due to use the fuel of lacking lubricity property($651{\mu}m$/quality standard: less in $400{\mu}m$). In addition, through an iron component was detected in the broken DPF, it was estimated that the breakage of the DPF was caused by the excessive exhaust of the particulate matter due to the iron component of the fuel.

Exposure Assessment of Dust, Ultra Fine Dust(Particulate Matter 2.5, PM2.5) and Black Carbon among Aircraft Cabin Cleaners (항공기 기내 청소노동자의 분진, 초미세먼지(PM2.5) 및 블랙카본 노출수준 평가)

  • Hyunhee Park;Sedong Kim;Sungho Kim;Seung-Hyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • Objectives: Aircraft cabin cleaning work is characterized by being performed within a limited time in a narrow and enclosed space. The objective of this study was to evaluate the exposure levels to dust, ultra fine dust(PM2.5) and black carbon(BC) among aircraft cabin cleaners. Methods: Active personal air sampling for respirable dust(n=73) and BC(n=47) was conducted during quick transit cleaning(cabin general and vacuum-specific) and seat cover replacement and total dust and PM2.5 were area-air-sampled as well. Also, size distribution of particle was identified with the cleaning workers targeted. Dusts were collected with PVC filters using gravimetric analysis. The concentration of PM2.5 and the particle size distribution were measured with real-time direct reading portable equipment using light scattering analysis. The concentration of BC was measured by aethalometer(filter-based real-time light absorption analysis instrument). Results: The geometric mean of respirable dust was the highest at vacuum cleaning as 74.4 ㎍/m3, following by replacing seat covers as 49.3 ㎍/m3 and cabin general cleaning as 47.8 ㎍/m3 . The arithmetic mean of PM2.5 was 4.83 ~ 9.89 ㎍/m3 inside the cabin, and 28.5~44.5 ㎍/m3 outside the cabin(from bus and outdoor waiting space). From size distribution, PM2.5/PM10 ratio was 0.54 at quick transit cleaning and 0.41 at replacing seat covers. The average concentration of BC was 2~7 ㎍/m3, showing a high correlation with the PM2.5 concentration. Conclusions: The hazards concentration levels of aircraft cabin cleaners were very similar to those of roadside outdoor workers. As the main source of pollution is estimated to be diesel vehicles operating at airports, and it is necessary to replace older vehicles, strengthen pollutant emission control regulations, and introduce electric vehicles. In addition, it is necessary to provide as part of airport-inftastructure a stable standby waiting space for aircraft cabin cleaners and introduce a systematic safety and health management system for all workers in the aviation industry.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.