• Title/Summary/Keyword: Diesel Reforming

Search Result 33, Processing Time 0.028 seconds

Atomization Effects of Diesel on Autothermal Reforming Reaction (디젤연료의 미립화에 따른 자열개질 반응특성에 관한 연구)

  • Bae, Joong-Myeon;Yoon, Sang-Ho;Kang, In-Yong
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.234-243
    • /
    • 2006
  • Diesel autothermal reforming (ATR) is a chemical process to produce hydrogen for fuel cell applications. Several previous studies were carried out to identify technical issues in diesel reforming. It is hard to vaporize diesel due to its high boiling points. Liquid droplets of diesel result in inhomogeneous fuel mixing with other reactants such as $O_2\;and\;H_2O$, which leads to reduce the reforming efficiency and make undesired coke in reactor. To solve the fuel delivery issue, we applied an ultrasonic device as a fuel injection system. Ultrasonic injector (UI) remarkably enhanced the reforming efficiency. This paper will present the reforming results using UI. And we will discuss about atomization effects of diesel on autothermal reforming reaction.

  • PDF

Experimental study on operation of diesel autothermal reformer for SOFC system (SOFC 시스템용 디젤 자열개질기 운전을 위한 기초 연구)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2015-2020
    • /
    • 2007
  • Diesel is an excellent candidate fuel for fuel cell applications due to its high hydrogen density and well-established infrastructure. But, it is hard to guarantee desirable performance of diesel reformer because diesel reforming has several problems such as sulfur poisoning of catalyst and carbon deposition. We have been focusing on diesel autothermal reforming(ATR) for substantial period. It is reported that ATR of diesel has several technical advantages such as relatively high efficiency and fuel conversion compared to steam reforming(SR) and partial oxidation(POX). In this paper, we investigate characteristics of diesel reforming under various ratios of reactants(oxygen to carbon ratio, steam to carbon ratio) for improvement of reforming performances(high reforming efficiency, high fuel conversion, low carbon deposition). We also exhibit calculated heat balance of autothermal reformer at each condition to help thermal management of SOFC system.

  • PDF

Study on carbon deposition in diesel autothermal reformer (디젤 자열개질기 내 탄소침적에 관한 연구)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.37-40
    • /
    • 2007
  • Diesel autothermal reforming(ATR) is an effective method for hydrogen production. But, diesel ATR has several problems such as the sulfur poisoning of catalyst and carbon deposition during reforming reactor. Especially, carbon deposition is a severe problem, which causes rapid performance degradation, in the reforming reaction. Ethylene among the reformate gas is a carbon precursor. Effective decomposition of ethylene is an important issue. In this paper, we investigated the carbon deposition from ethylene in the reforming reaction for proper reaction condition of diesel ATR. We achieved relatively high performance of diesel ATR under $H_{2}O/C=0.8$, $O_{2}/C=3$ condition that was based on the experiment of ethylene reforming reaction.

  • PDF

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Methodology for removing unreacted low-hydrocarbons in diesel reformate for stable operation of solid oxide fuel cells (안정적인 SOFC 운전을 위한 디젤 개질기 내 미반응 저탄화수소 제거법)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.773-776
    • /
    • 2009
  • In this paper, new concept of the diesel fuel processing is introduced for the stable operation of solid oxide fuel cells (SOFCs). Heavier hydrocarbons than $CH_4$, such as ethylene, ethane, propane, and etc., induce the carbon deposition on anode of SOFCs. In the reformate of heavy hydrocarbons (diesel, gasoline, kerosene, and JP-8), concentration of ethylene is usually higher than low hydrocarbons such as ethane, propane, and butane. So, removal of low hydrocarbons (over C1-hydrocarbons), especially ethylene, at the reformate gases is important for stable operation of SOFCs. New methodology as named "post-reformer" is introduced for removing the low hydrocarbons at the reformate gas stream. Catalyst of the NECS-PR4 is selected for post-reforming catalyst because the catalyst of NECS-PR4 shows the high selectivity for removing low hydrocarbons and achieving the high reforming efficiency. The diesel reformer and post-reformer are continuously operated for about 200 hours as integrated mode. The reforming performance is not degraded and low hydrocarbons in the diesel reformate are completely removed.

  • PDF

kW-class Diesel Autothermal Reformer with Microchannel Catalyst for Solid Oxide Fuel Cell System (고체산화물 연료전지 시스템을 위한 kW급 마이크로채널 촉매 디젤 자열 개질기)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.558-565
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) has a higher fuel flexibility than low temperature fuel cells, such as polymer electrolyte fuel cell(PEMFC) and phosphoric acid fuel cell(PAFC). SOFCs also use CO and $CH_4$ as a fuel, because SOFCs are hot enough to allow the CH4 steam reformation(SR) reaction and water-gas shift(WGS) reaction occur within the SOFC stack itself. Diesel is a good candidate for SOFC system fuel because diesel reformate gas include a higher degree of CO and $CH_4$ concentration than other hydrocarbon(methane, butane, etc.) reformate gas. Selection of catalyst for autothermalr reforming of diesel was performed in this paper, and characteristics of reforming performance between packed-bed and microchannel catalyst are compared for SOFC system. The mesh-typed microchannel catalyst also investigated for diesel ATR operation for 1kW-class SOFC system. 1kW-class diesel microchannel ATR was continuously operated about 30 hours and its reforming efficiency was achieved nearly 55%.

Preparation of perovskite-based catalysts and fuel injection system for high durability of diesel reforming (디젤 개질을 위한 페로브스카이트 구조 촉매와 연료주입 시스템의 개발)

  • Rhee, Junki;Park, Sangsun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.115.2-115.2
    • /
    • 2010
  • Autothermal reforming(ATR) processes of hydrocarbon liquids such as diesel fuels are spotlighted as methods to produce hydrogen for Fuel cell. However, the use of heavy hydrocarbons as feedstocks for hydrogen production causes some problems which increase the catalyst deactivation by the carbon deposition. Coking can be inhibited by increasing the water dissociation on the catalyst surface. This results in catastrophic failure of whole system. Performance degradation of diesel autothermal reforming leads to increase of undesirable hydrocarbons at reformed gases and subsequently decrease the performance. In this study, perovskite-based catalysts were investigated as alternatives to substitute the noble metal catalyst for the ATR of diesel. The investigated perovskite structure was based on LaCrO3. and metals were added at the A-site to enhance oxygen ion mobility, transition metals were doped on the B-site to enhance the reformation. Substituted Lanthanum chromium perovskite were made by aqueous combustion synthesis, which can produce high surface area. And for the homogeneous fuel supply, we made ultrasonic injection system for reforming. We compared durability of evaporation system and ultrasonic system for fuel injection.

  • PDF

Study on Possibility of Diesel Reforming with Hydrogen Peroxide in Low-Oxygen Environments (산소희박환경에서 과산화수소를 이용한 디젤개질 가능성 탐구)

  • Han, Gwangwoo;Bae, Minseok;Bae, Joongmyeon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.584-589
    • /
    • 2015
  • For effective power generation with fuel cells in low-oxygen environments such as submarines and unmanned underwater vehicles, a hydrogen source which has a high hydrogen storage density is required. Diesel fuel is easy to storage and supply due to its liquid phase and it has a high density per unit volume and unit mass of hydrogen that required for driving the fuel cells. In this paper, diesel fuel was selected as a hydrogen source for driving the fuel cell in oxygen lean environments. In addition, the aqueous hydrogen peroxide solution was suggested as an alternative oxidant for hydrogen production through the diesel reforming reaction because of its high oxygen density and liquid phase which makes it easy to storage. In order to determine the characteristics of hydrogen peroxide as an oxidant of diesel reforming, comparative experiments were conducted and it was found that hydrogen peroxide solution has the same characteristics when reformed with oxidants of both steam and oxygen. Moreover, the commercial diesel reforming performances were analyzed according to the reaction temperature and concentration of aqueous hydrogen peroxide solution. Then, through the 49 hours accelerated degradation tests, the possibility of hydrogen production via diesel and aqueous hydrogen peroxide solution was confirmed.

Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate (디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF

Restraint of carbon deposition in diesel ATR using fuel atomizer (연료 미립화기를 이용한 디젤 자열개질기 내 탄소침적 억제)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.67-70
    • /
    • 2007
  • Diesel autothermal reforming has several problems such as carbon deposition in reforming reactor, sulfur poisoning of catalyst, difficulty of aromatics decomposition and mixing problems of reactants(diesel, steam, oxygen). Severe carbon deposition causes the rapid performance degradation of reformer. Carbon deposition is formed from ethylene, carbon precursor. Ethylene was generated at the homogeneous reaction zone of the reactor entrance. This phenomenon is closely linked to the mixing of reactants. In this investigation, we try to minimize the ethylene generation at the reactor entrance atomization technique.

  • PDF