• Title/Summary/Keyword: Diesel Generator

Search Result 315, Processing Time 0.021 seconds

Seismic performance of emergency diesel generator for high frequency motions

  • Jeong, Young-Soo;Baek, Eun-Rim;Jeon, Bub-Gyu;Chang, Sung-Jin;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1470-1476
    • /
    • 2019
  • The nuclear power plants in South Korea have been designed in accordance with the U.S. Regulatory Guide 1.60 (R.G 1.60) design spectrum of which the peak frequency range is 2-10 Hz. The characteristics of the earthquakes at the Korea nuclear power plant sites were observed to be closer to that of Central and Eastern United States (CEUS) than the R.G 1.60, which is a lower amplification in a low frequency range, and a higher amplification in a high frequency range. The possibility of failure for sensitive power plant components in the high frequency range has been considered and evaluated. In this study, in order to improve the reliability of nuclear plant and administrative control procedures, seismic tests of an emergency diesel generator (EDG) were conducted using a shaking table under both high and low frequency ranges. From the tests, oil/lubricant leaks from the bolt connections, the fuel filter and the fuel inlet were observed. Therefore, the check list of nuclear plant components after an earthquake should include bolt connections of EDG as well as anchor bolts.

A Study on the Development of a Variable Speed Diesel Generator for DC Distribution (직류배전용 가변속 디젤발전기 개발에 관한 연구)

  • Park, Kido;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.117-121
    • /
    • 2019
  • In this study, research and a demonstration for applying DC distribution systems to ships as an environmental and energy conservation solution in domestic and foreign countries were actively carried out. In order to apply a generator to a DC distribution system, a variable speed engine was used. Both engine speed and fuel consumption were reduced. In this paper, a DC generator for DC distribution was constructed using a diesel generator, a generator controller, a governor, and an AVR. A system configuration method for a generator, power quality test, and the power characteristics of a variable speed generator were analyzed. The voltage (250 - 440 VAC) and frequency (34 - 60 Hz) of the variable speed generator were set to 60 - 100 % of the rated value, and the engine was set to operate from 1100 - 1800 rpm. It was confirmed that the voltage, current, and frequency of the generator output fluctuated in a stable manner according to the power amount when changing the engine speed of the generator according to the load variation.

A Study on the Seismic Isolated Bed System Considering the Seismic Stability of an Emergency Diesel Generator (내진안정성을 고려한 비상디젤발전기의 방진베드시스템에 관한 연구)

  • Ha, Neung-Gyo;Kim, Chae-Sil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1155-1163
    • /
    • 2022
  • This study proposes a technology to ensure the seismic stability of a 1,000 kW diesel engine-type emergency generator by applying a seismic isolated bed system. The technology allows the static analysis by making the first natural frequency of the installed entire emergency generator larger than the earthquake cutoff frequency of 33 Hz. First a three dimensional model for the generator was made with simplification for mode analysis. A new bed system with springs, shock absorbers, stoppers was then devised. Next, The mode analysis for the finite element model equipped by the bed system was performed. the 1st natural frequency above 33 Hz, the seismic safety cutoff frequency, was calculated to be 152.92 Hz. Finally, based on the seismic stability theory, the von-Mises equivalent stresses derived by structural analysis under the Upset and Faulted conditions were 0.01603 Mpa, and 32.06 Mpa, respectively. so seismic stability was confirmed.

Speed Estimation of Diesel-Generator Systems Based on Multiple SOGI-FLLs (다중 SOGI-FLL 기반 엔진-발전기 시스템의 속도 추정)

  • Dao, Ngoc Dat;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.63-64
    • /
    • 2017
  • This paper proposes a speed estimator for sensorless control of diesel-generator (genset) systems, where the speed of the genset is calculated from the back-EMF frequency of the generator. The back-EMF frequency is extracted from a phase output current by using multiple second-order generalized integrators (SOGIs) connected in parallel and series and separated frequency-locked loops. The proposed method (PS-SOGI-FLL) is able to estimate the fundamental frequency in the distorted output current with high accuracy and strong robustness. Simulation results are shown to verify the validity of the proposed method.

  • PDF

Governor upgrade for PWR NPP safety related Emergency Diesel Generator (경수로형 원자력 안전등급 비상디젤발전기)

  • Kim, Yoon Sik;Jeon, Il-Young;Song, Dong-Young;Kim, Chang-Kook;Sim, Su-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.293-298
    • /
    • 2005
  • The following is final report for governor upgrade for PWR NPP safety related EDG Kori NPP No.2 Unit. The upgraded system includes more beneficial function like as "Slow start with starting ramp", "Generator load sensing & control capability" and "Emergency ramp during slow start". This paper show functional operation of slow start regime according to NRC regulatory guide which guide regulation to NPP safety related environment.

  • PDF

Evaluation of Solar-Diesel-Battery Hybrid System for Off-Grid Rural Electrification in Myanmar

  • Win, Phyu Phyu;Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2138-2145
    • /
    • 2017
  • A hybrid system combining renewable technologies with diesel generators is a promising solution for rural electrification. Myanmar has many renewable energy resources, and many regions that cannot be supplied with electricity from the main grid. Therefore, in this study, we select a village in Myanmar, which is located far away from the substation, and evaluate the economic feasibility of a hybrid system for the village considering the specific local conditions and resource availability. We consider a hybrid system composed of a photovoltaic source, diesel generator, battery energy storage system, and converter. The load profiles of the household data from the village, and the solar radiation profiles are determined. The advantages of the hybrid system, in terms of cost, reliability, and environmental effects are analyzed through simulations using commercial software. The simulation results show that, for the selected village in Myanmar, a hybrid system with battery energy storage can reduce the cost and greenhouse gas emissions while maintaining reliability. We also obtain an optimized design in terms of the component size for the selected hybrid system with battery energy storage.

Modification of Hybrid Diesel Vehicle and Its Effect on the Exhaust Emissions (디젤 하이브리드 차량 개조에 따른 배기 배출물 영향 평가)

  • Kwon, Soonho;Lim, Jongsoon;Lee, Hyunwoo;Lee, Jeonghoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.537-544
    • /
    • 2015
  • The effects of the modification of hybrid vehicle components on diesel exhaust emissions were investigated in this study. We examined the changes in exhaust emissions and the fuel consumption (FC) caused by the modification of generator (alternator) and motors. Exhaust emissions such as black carbon (BC), HC, $NO_X$ and $CO_2$ were measured not only in idle state but also on an actual urban road as well as on a chassis dynamometer. BC, $NO_X$ and HC emissions increased by 95%, 27% and 34% respectively when the generator charged the battery in the idle condition. BC and FC decreased in hybrid mode on the actual urban road partly because the motors were used to assist the diesel engine. In addition, the decreases in exhaust emissions and FC were also evident in the hybrid mode when the vehicle was tested on the chassis dynamometer.

Control of Torsional Vibration using Uneven Crank Angels on the Shafting for Diesel Power Plant (부등간격 크랭크 배치각에 의한 디젤 발전소 축계의 비틀림진동 제어)

  • 이돈출;유정대;김정렬
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.655-661
    • /
    • 2000
  • Diesel power plant can be used as a power supplier for the isolated place where consumption of electric power is variable. The reason is that mobility and durability of diesel engine is superior to those of other thermal engines. However, there are some disadvantages for using these diesel engines such as bigger vibratory excitation force comparing to the others, which result from high combustion pressure of cylinders and inertia force of piston reciprocating masses. In this paper, control and optimization of torsional vibration of 12K90MC-S engine for diesel power plant using uneven crank angles is identified by theoretical analysis and vibration measurement.

  • PDF

Development of Simulation Model for Waste Heat Recovery from Automotive Engine Exhaust Using Thermoelectric Generator (열전소자를 이용한 자동차 엔진 배기 폐열 회수 시스템 해석 모델 개발)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1022-1026
    • /
    • 2013
  • Recently, the waste heat recovery technique using thermoelectric generator (TEG) in automotive engine has emerged to improve thermal efficiency in commercial vehicle. It is not difficult to recognize the numerous attempts that have been made to develop the TEG simulation model, but it is hard to find the model in conjunction with a particular heat engine system. In this study, 1-D commercial software AMESim was used to develop a computational model that can assess waste heat recovery from a diesel engine exhaust using TEG. The developed TEG simulation model can be used for evaluating the TEG performance of various types of TE module, and the diesel engine model can simulate any type of on and off-road diesel engines. The simulation results demonstrated that approximately 544.75W could be recovered from the engine exhaust and 40.4W could be directly converted into electricity using one TE module. The models developed in this study can be easily coupled with each other in the same computational program; thus, the models are expected to provide a viable tool for developing and optimizing a TEG waste heat recovery system in an automotive diesel engine.