• 제목/요약/키워드: Diesel Contaminated Soil

검색결과 152건 처리시간 0.028초

Influence of Co-Surfactants to Surfactant-Enhanced Remediation of Diesel-Contaminated Sandy Soil

  • 김종성;김우정;이은영;이기세
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.149-152
    • /
    • 2000
  • The effects of selected co-surfactants on diesel removal from sandy soil were studied to increase diesel recovery from the soil by the surfactant-enhanced remediation of diesel-contaminated soil. The capability of co-surfactant for enhancing removal efficiency can be related with the interaction between its structural character and the structural peculiarity of nonionic surfactant. In the case of Tween 80, hexanol showed the great improvement in diesel recovery. Efficiency of diesel recovery decreased as hydrocarbon chain length of cosurfactant decreased. Higher content of hexanol further increased diesel recovery, but there was no significant improvement in the case of butanol and pentanol.

  • PDF

생물계면활성제를 이용한 디이젤 오염토양세척기술에 관한 연구 (A Study on Remediation of Diesel-Contaminated Soil by Biosurfactant- Enhanced Soil Washing)

  • 문혜준;임영경;김윤관;주춘성;방기연;정욱진;이승우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제7권2호
    • /
    • pp.13-22
    • /
    • 2002
  • 본 연구에서는 토양에 오염된 디이젤 성분을 제거하기 위한 토양세척 기술 중에서 적절한 계면활성제를 사용하여 토양입자에 결합되어 있는 유해 유기물질의 표면장력을 약화시켜 제거하는 기술을 이용하기 위해 생분해성이 우수하고 2차 오염문제가 없는 생물계면활성제를 생산하였다. Peudomonas aeruginosa ATCC 9027를 이용하여 생산된 생물계면활성제인 rhamnolipid와 기존에 사용되고 있는 화학계면활성제와의 디이젤 세척효능을 비교분석하였다. 회분식, 연속식 세척실험 결과 디이젤 오염토양 초기농도 5,000ppm에서 계면활성제 1%, 세척시간 24시간 경과 후 본 연구에서 생산된 rhamnolipid의 세척효율이 모두 약 95%로 사용된 계면활성제 중에서 가장 우수한 세척효율을 보였다. 화학계면활성제들은 대부분 50∼80% 미만의 세척효율을 나타내었으며, HLB값이 8에서 15사이에서의 화학계면활성제의 경우 75%이상의 분해효율을 나타내었다. 그러나, HLB값이 8이하이거나 15이상에서는 60%이하의 낮은 디이젤 분해효율을 나타내었다.

디젤 오염토양의 생물학적 복원에 관한 기초연구 (Preliminary Study of Bioremediation in Diesel Contaminated Soil)

  • 김선영;권수열;이상훈
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.167-170
    • /
    • 2000
  • The purpose of study is to evaluate the effects of physical parameters on diesel biodegradation in diesel contaminated soil. The parameters applied are concentration, temperature, moisture contents, electron acceptor(O$_2$). The results of this study showed that diesel were degraded faster at high temperature and moisture contents than at low temperature and moisture content. However concentration effect study indicates that diesel were more faster degraded at low concentration than at high concentration. The results of electron acceptor test showed concentration of oxygen did not affect the biodegradation rate of diesel in oxygen condition(10, 20%) of this study.

  • PDF

미생물제제를 이용한 유류오염지역의 토양정화

  • 심두섭;송현주;박수진;고성환
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.360-363
    • /
    • 2003
  • Bioremediation is often used for in situ remediation of petroleum-contaminated site. We studied the microbial degradation of hydrocarbon in an artificially diesel contaminated soil in laboratory microcosm. In control soil, about 30% of the initial TPH was diminished and the degradation of diesel oil was significantly enhanced by the addition of bioremediation agent (70% of TPH reduction).

  • PDF

흐름식 아임계수에 의한 경유오염토양의 정화 (Remediation of Diesel Contaminated Soil Using Flowing Subcritical Water)

  • 이광춘;정선국;정선용;조영태;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권3호
    • /
    • pp.10-16
    • /
    • 2011
  • The experimental studies for remediation of diesel contaminated soils were performed using subcritical water in laboratory scale. Contaminated soils from industrial area and artificially contaminated soils were utilized for soil remediation. Experimental system was composed for subcritical water to flow upward through the soil packed column for extracting contaminants. 10 g of contaminated soil was packed into the column and water flow rate was 2 mL/min. To evaluate the effects of temperature, pressure and treatment time on the removal efficiency, temperature was changed from 100$^{\circ}C$ to 350$^{\circ}C$, pressure from 50 bar to 220 bar and treatment time at the predetermined temperature from 0 min to 120 min. The purification efficiency increased as temperature increased. However, the effect of pressure and treatment time was low. Temperature 250$^{\circ}C$, pressure 50 bar and treatment time 30 min were selected for optimal operating condition for this study.

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

토양 내 복합유종에 의한 오염 해석 연구 (Interpretation of Contaminated Soil by Complex Oil)

  • 임영관;김정민;김종렬;하종한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.13-17
    • /
    • 2017
  • Over 30% of domestic soil contamination has occurred via petroleum products and complex oil. Moreover, contamination by complex oil is more intense than it is by a single petroleum product species. In this study, we analyzed sectional TPH (total petroleum hydrocarbon) pattern and sectional ratio of current domestically distributed petroleum products, such as kerosene, diesel, bunker C, and lubricant and complex oils, to determine pollution characteristics of the soil. In the TPH pattern, kerosene, which is a light distillate, had an early retention time, and lubricant oil, which is a heavy distillate, had a late retention time in the gas chromatogram. In addition, we obtained a complexly contaminated soil via diesel and lubricant oil from the Navy and inspected it for its ratio of complex oil species. The inspection results showed that this soil was contaminated with 85% diesel and 15% lubricant oil. The method developed in this study could be used to determine complex petroleum sources and ratios at sites with accidentally contaminated soil.

Lab-Scale Biosparging Study to Remediate Diesel-Contaminated Soil and Groundwater : the effect of air injection rate and pattern

  • 조수형;이시진;권순열;장순웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.462-466
    • /
    • 2003
  • This study was conducted to examine the potential of biosparging process in removing diesel contaminated soil and groundwater. The experiment was carried out lab-scale biosparging reactor and the biodegradation rate of diesel was evaluated as function of air injection rate and pattern. When renter was operated as air injection rate of 1000$m\ell$/min and pulsed air injection(15min pulse, 15min downtime), DO concentration in the renter was higher than another operating condition. The evidence for biodegradation of diesel was the $O_2$ utilization and $CO_2$ product following the cessation of sparging. Especially, air injection rate of 2000$m\ell$/min and pulsed air injection(15min pulse, 15min downtime) enhanced the diesel biodegradation during the operating. After 120day, the biodegradation rate of diesel was decreased as the lack of carbon source.

  • PDF

유류 오염 점성토의 강도 특성 (The Strength Characteristic of Oil Contaminated Clayey Soil)

  • 권무남;김현기;남효석;구정민
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.183-186
    • /
    • 2003
  • This study was conducted to evaluate effects by adding oil to clay soil and influences of remained oil in soil as time elapsed. Unconfined compression test and direct shear test were performed to analyze strength properties of contaminants in clayey soil. As a results of $q_u$ test for kerosene and diesel contaminated clayey soil indicate that were decreased from near 5% oil content rapidly and the declination of strength were blunt as oil content over 10%. The cohesions(c) and internal friction angle(${\psi}$) of kerosene contaminated clayey soil were not varied as quantities of kerosene in clayey soil increased. In the case of diesel contaminated clayey soil, the cohesions(c) were decreased and the internal friction angle(${\psi}$) were increased.

  • PDF

계면활성제 거품(Foam)을 이용한 토양칼럼 내 유류 및 중금속 동시 제거 연구 (Simultaneous Removal of Heavy Metals and Diesel-fuel from a Soil Column by Surfactant Foam Flushing)

  • 허정현;정승우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.90-96
    • /
    • 2011
  • Simultaneous removal of heavy metals (Cd, Pb) and diesel-fuel from a soil column was evaluated by respectively flushing with sodium dodecyl sulfate (SDS) solution, mixture of SDS and sodium iodide (SDS + NaI), and surfactant foam (SDS + NaI foam). First, this study evaluated these flushing methods to the heavy metals only-contaminated soil for removal of heavy metals from the heavy-metal only contaminated soil column. After 7 pore volume flushing of the soil column, Cd removal efficiencies from the soil were 40% by SDS solution, 50% by SDS + NaI mixture, and 60% by surfactant foam. The flushing results implied that anionic surfactant and ligand can be efficiently applied to extraction of Cd from the heavy metal contaminated soil. Furthermore, surfactant foam flushing showed an increased flushing efficiency with enhancing the contact between surfactant solution and soil. However, Pb removal efficiency by these flushing methods did not show any difference unlike those of Cd. Second, this study eventually evaluated flushing methods for simultaneous removal of heavy metals and diesel-fuel from the soil column with 7 pore volume flushing. Diesel-fuel removal efficiencies were 50% by SDS + NaI flushing and 90% by SDS + NaI foam flushing. Cd removal efficiency by the foam flushing reached to 80% which was higher than the result of the previous heavy metals onlycontaminated soil experiment. This result implied that diesel-fuel could act as a metal-solvent while it contacted to heavy metals present in the soil. This study clearly showed that surfactant foam flushing simultaneously removed heavy metals and diesel fuel from the soil column.