• 제목/요약/키워드: Dies and molds

검색결과 136건 처리시간 0.022초

고속가공 가공 정밀도 예측에 관한 연구 (A Study about an estimate about machining accuracy of High Speed Machining)

  • 이춘만;류승표;정원지;정종윤;고태조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.460-465
    • /
    • 2003
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages fur the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining and an estimate about machining accuracy of high-speed machining.

  • PDF

볼 엔드밀을 이용한 고속가공에서 금형제품의 형성가공 특성파악 (Evaluation on Shape Machining of Dies and Molds in High speed Machining using Ball-End Milling)

  • 김경균;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.143-146
    • /
    • 1995
  • Due to the recent growth of die/mold machining industry, demands for the high-precision and the high0quality of die product are increasing rapidly. Free surfaces of die/mold are often manufactured using the ball-end milling process. It is difficult to find the cutting condition of the ball-end milling process due to the free form machining for the various tool paths on inclined surface.

  • PDF

휴대폰 후면 커버의 공정시간 단축에 따른 치수 편차의 최적화에 관한 연구 (A Study on the Optimization of the Dimensional Deviation due to the Shortening of the Cycle Time for Rear Cover of Mobile Phone)

  • 김주권;김종선;이준한;곽재섭
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, we investigated the optimization of process conditions by using the Six Sigma process, design of experiment (DOE) method and response surface method (RSM) to resolve dimensional deviation and appearance problems arising from the shortened process time of the mobile phone rear cover. The analysis of the trivial many was performed by 2-sample T-test and cooling time, and mold temperature and packing pressure were selected as the vital fews affecting the overall width of the product. The optimal conditions of the process were then studied using the DOE and the RSM. We analyzed the improvement effects by applying the selected optimal conditions to the production process and the results showed that the difference between the mean value and target value of the overall width stood at 0.01 mm, an improvement of 88.89% compared to current process that fell within the range of standard dimension. The short-term process capability stood at $4.77{\sigma}$, which implied an excellent technology level despite a decrease by $0.22{\sigma}$ compared to the current process. The difference in process capability decreased by $2.44{\sigma}$ to $0.41{\sigma}$, showing a significant improvement in management capability. Ultimately, the process time of the product was shortened from 18.3 seconds in the current process to 13.65 seconds, resulting in a 34.07% improvement in production yield.

플라스틱 세포치료제 보관용기의 극저온 환경 노출 시 구조적 변화에 대한 해석적 비교 (Analytical comparison of structural changes of plastic cell-based therapeutic drug storage containers when exposed to cryogenic environments)

  • 박정연;이동목;;이순례;윤길상
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.1-6
    • /
    • 2020
  • Recently, research and commercialization related to the field of cell-based therapeutic drug development has been actively conducted. In order to maintain cell viability and prevent contamination, refrigeration preservation devices, such as CRF (controlled rate freezer) or vapor type LN2 tanks have been developed. On the other hand, the storage container for liquid nitrogen tanks currently on sale minimizes the flow structure to prevent structural defects when stored in a liquid nitrogen tank having a high thermal conductivity than vapor nitrogen. If the cell-based treatment drug is stored in the gaseous LN2 tank as it is, the cell survival after thawing is greatly reduced. It was estimated that the existing storage container structure was a factor that prevented the rapid entry and circulation of gaseous nitrogen into the container. Therefore, this study intends to propose a new supercellular storage container model that can maintain the mechanical strength while maximizing the fluid flow structure. To this end, we estimated that the structural change of the storage container effects on the equivalent stress formed around the through-holes of them when exposed to a cryogenic environment using thermal-structural coupled field analysis. As a result of storage experiments in the gas phase tank of the cell-based therapeutic agent using the developed storage container, it was confirmed that the cell growth rate was improved from 66% to 77%, which satisfied the transportation standards of the FDA(Food and Drug Administration) cell-based therapeutic agent.

ORR(Order Review and Release)을 이용한 중${\cdot}$소 사출금형업체 일정계획시스템 개발 (A scheduling management system (SMS) using order review and release (ORR) for small & medium sized mold & die makers)

  • 길국호;김봉혁;김동원
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.620-623
    • /
    • 2004
  • Conventionally injection molds & dies are manufactured through an order-oriented manner. This brings unexpected orders into the shop floor such as hot order, re-work, and new types of mold & dies. Thus, there needs appropriate resource assignment plans considering the available times of machines and workers. Further, a scheduling system is required that can create work schedules periodically or by customers' requests. Yet, in small & medium sized mold & die makers, production schedules usually depend on the shop floor workers' experience and their manual preparation. Hence, developed in this study is a scheduling management system (SMS) based on order release and review (ORR) in small and medium sized mold & die companies. The proposed SMS considers delivery dates as well as flexible work schedules, so as to meet frequent changes of customers' order. The system can provide effective resource assigning and work scheduling plans, securing standard data associated with shop floors. Furthermore, the system pursues economical schedules for companies' needs, equipped with an available to promise (ATP) function that can effectively accommodate the changes of production plans.

  • PDF

자유곡면 NC 절삭가공시간 예측 (Estimation of Sculptured Surface NC Machining Time)

  • 허은영;김보현;김동원
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.254-261
    • /
    • 2003
  • In mold and die shops, NC machining process mainly affects the quality of the machined surface and the manufacturing time of molds and dies. The estimation of NC machining time is a prerequisite to measure the machining productivity and to generate a process schedule, which generally includes the process sequence and the completion time of each process. It is required to take into account dynamic characteristics in the estimation, such as the ac/deceleration of NC machine controllers. Intensive observations at start and end points of NC blocks show that a minimum feedrate, a key variable in a machining time model, has a close relation to a block distance, an angle between blocks, and a command feedrate. Thus, this study addresses regression models for the minimum feedrate estimation on short and long NC blocks considering these parameters. Furthermore, machining time estimation models by the four types of feedrate behaviors are suggested based on the estimated minimum feedrate. To show the validity of the proposed machining time model, the study compares the estimated with the actual machining time in the sculptured surface machining of several mold dies.

금속분말 혼합수지를 이용한 쾌속 형 제작에 관한 연구 (A study on the Rapid Tooling Using Metal Powder Filled Resin)

  • 김범수;배원병;정해도
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.36-44
    • /
    • 1999
  • The rapid Tooling technique is classified into two methods: one to directly utilize the model which was made by rapid prototyping technologies for dies, and the other to make a transferred type using the model as a master model and create dies and molds using it. In this study, the Al powder filled resin was made several mixed ratios and meshes sizes, and applied to slurry casting. And, variation of mechanical characteristics such as the shrinkage rate, the tensile strength, the elongation, the hardness, and surface roughness, are measured to compare. Consequently, as higher is the powder mixed ration and as smaller is the grain size of the power, the mechanical characteristics of the final mold are improved. Finally, the metal short fiber which can be fabricated easily and cheaply, if the self-excited vibration of an elastic tool, was also applied to slurry casting. It has been found tat the hardness gets higher, while the shrinkage rate lower, if mixed with short fiber.

  • PDF

박형 도광판의 음각, 양각 마이크로 패턴 성형성에 관한 연구 (Study on the gate cutting of light guiding plate for mobile using quenching element)

  • 황철진;김종선;민인기;김종덕;윤경환
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.1-4
    • /
    • 2008
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LCP (Light Guide Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50-200{\mu}m$ in diameter on it by erosion method. But the surface of the erosion dots of LGP is very rough due to the characteristics of the erosion process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. Especially, the negative and positive micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP.

  • PDF

점진성형에서 형상 정밀도에 영향을 미치는 공정 변수 (Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming)

  • 강재관;정종윤
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

3축 전동테이블을 이용한 레이저 스캐너의 측정 및 레지스트레이션 자동화 (Automation of laser scanning and registration of measured data using a 3-axis motorized stage)

  • 손석배;김승만;이관행
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.134-139
    • /
    • 2001
  • Laser scanners are widely used for reverse engineering and inspection of freeform parts in industry such as motors, electronic products, dies and molds. Due to the lack of measuring software and positioning device, the laser scanning processes have been erroneous and inconsistent. In order to automate measuring processes, an automated scan plan generation software and a proprietary hardware are developed. In this paper, an automated laser scanning system using a 3-axis motorized stage is proposed. In the scan planning step, scan directions, paths, and the number of scans are generated considering optical and mechanical parameters. In the scanning step, the generated scan plan is downloaded into the laser scanner and the motorized stage and the points on the surface are captured automatically. Finally, the point data set is analyzed to evaluate the performance of the system.

  • PDF