• 제목/요약/키워드: Dies and molds

검색결과 136건 처리시간 0.023초

볼엔드밀의 고속가공에서 절삭력 분석 및 평가에 관한 연구 (A study on the Analysis and Evaluation of Cutting forces for High Speed Machining by a Ball-end mill)

  • 이춘만;류승표;고태조;정종윤;정원지
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.167-174
    • /
    • 2005
  • High-speed machining is one of the most effective technologies to improve productivity Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the analysis and evaluation of cutting force in high-speed machining. Cutter rotation directions, slope directions, spindle revolution and depth of cut are control factors for cutting force. The effect of the control factors on cutting force is investigated for the high speed machining of STD11.

마이크로 방전 밀링을 이용한 미세 구조물 제작 (Fabrication of 3D Micro Structure Using Micro Electrical Discharge Milling)

  • 이병욱;이상민;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.41-47
    • /
    • 2004
  • As mechanical structures are minimized, the demand on micro dies and molds has increased. Machining complex 3D shapes requires fabrication procedures for preparing the electrodes. Micro electrical discharge milling using a simple shape electrode can produce 3D micro structure. In this paper the machining characteristics of micro electrical discharge milling according to depth of cut and capacitance are investigated. The machining time is diminished when simple tool-paths and algorithms for changing the feedrate are applied. But a distorted bottom shape and a tapered wall shape are inevitable after machining. The distorted bottom shape and the taper angle of wall are reduced by finish machining.

자동 경면 다듬질 장치의 실험적 분석에 관한 연구 (A Study on the Experimental Analysis of the Automatic Fine Polishing System)

  • 박균명;장진희;한창수
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.30-39
    • /
    • 1995
  • Now a days, securing skilled workers is very difficult due to the hardworking environment. This situation will be getting worse in the future and also that makes the dies/molds industries difficult. In this research, the automatic fone polishing system which can be directly attached to the spindle of CNC machine is proposed and analyzed. The system is also controlled by the NC progra data created by CAD/CAM system. The usefulness and effectiveness of the developed system are verified more detail through some comparisons between automatic and manual polishing experiments. The experiments show that the automatic polishing is a more useful and effective process than manual one. For the application, this system can be easily used for the polishing process in the area of any fine surface.

  • PDF

고속절삭가공기술개발 (Development of High Speed Machining Technology)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.266-272
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and hugh fried rate, high-speed machining can alive great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on machining accuracy is discussed fur the results of surface roughness and machining error in Z-direction of the high speed machining.

  • PDF

엔드밀의 형상이 가공특성 및 절삭시간에 미치는 영향에 관한 연구 (Study on the effects of endmill's shape on the machinabitity and the cutting time)

  • 김병희;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.52-57
    • /
    • 1993
  • In this study, the inclined endmilling process with a 3-axis machining center using inalined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyse the cutting mechanism of a given endmill more accurateky, the unification of the cutting mechanism model of 3-different-kind endmills is examined by using the mose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp heigh superposing the cutter mark height and the conventional cusp height is modified. And 3-D surface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition algorithm was confirmed.

  • PDF

AL7075의 고속가공특성 평가 (A Study on the Evaluation on High-speed Machining Characteristics of AL7075)

  • 이종현;이동주;이응숙;신보성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.220-224
    • /
    • 2001
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and molds. To perform efficient high-speed machining, evaluation of high speed machinability must be studied preferentially and it can be identified by investigation of cutting force. To measure cutting force in high-speed machining, dynamometer has to have high natural frequency. In this paper, The dynamometer which has high natural frequency used to measure the cutting force in various cutting conditions. High-speed machining characteristics are evaluated by the cutting force, FFT analysis of the cutting force and chip formation.

  • PDF

STD11 금형강의 고속가공에서 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining of STD11)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.329-334
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate, spindle revolution and cutting force are control factors. The effect of the control factors on machining accuracy is discussed for the results of surface roughness and machining error in Z-direction for the high speed machining of STD11.

  • PDF

실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments)

  • 권병두;고태조;정종윤;정원지;이춘만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 1997
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut and feed rate are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

  • PDF

금속시제품의 신속제작을 위한 공정기술개발 (Process developments for direct manufacturing of metallic prototypes)

  • 송용억
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.605-609
    • /
    • 1996
  • In order to ensure that the prototype corresponds as closely as possible to the serial part subsequently to be manufactured, the materials used for the prototye should, wherever possible, be identical to those used in production. In case of metallic parts, however, this demand is still not completely fulfilled by the available Rapid Prototyping techniques. Since only conventional manufacturing processes caan currentlybe used to produce metallic prototypes directly, these are extremely cost and labor intensive. For this reason, work is being undertaken worldwide to develop Selective Laser Sintering (referred to SLS) and Laser Generating for direct manufacture of metallic parts. In this paper the results of both process developments are reported. As the present results show, they have great application potentials in prototyping tools, especially molds and dies.

  • PDF

실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments)

  • 이춘만;권병두;고태조;정종윤;정원지
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.88-96
    • /
    • 2002
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.