• Title/Summary/Keyword: Dielectric relaxation time

Search Result 86, Processing Time 0.03 seconds

Viscosity Prediction of Synthetic Lubricants from Temperature and Pressure Dependence of Dielectric Relaxation Time

  • Suzuki, A.;Masuko, M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.355-356
    • /
    • 2002
  • The dielectric permittance and the dielectric loss factor of several lubricating oils were measured at frequencies from 100 Hz to 1.5 MHz. The measurements were carried out under atmospheric pressure as a function of temperature and under fixed temperature as a function of pressure. Temperature and pressure dependence of dielectric relaxation time were investigated. The temperature dependence of relaxation time obeyed the Vogel-Fulcher-Tammann (VFT) law. We modified the VFT equation in order to express the dielectric relaxation time as a function of temperature and pressure. Furthermore. by taking into consideration the similarity of the temperature and pressure dependence between dielectric relaxation and mechanical relaxation. the prediction of high-pressure viscosity were conducted. The predicted results were compared with the viscosity data obtained from the falling-sphere type viscometer.

  • PDF

Static Dielectric Constant and Relaxation Time for the Binary Mixture of Water, Ethanol, N. N-Dimethylformamide, Dimethylsulphoxide, and N, M-Dimethylacetamide with 20Hethoxyethanol

  • Ajay Chaudgari;N. M. More;S. C. Mehrotra
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.357-361
    • /
    • 2001
  • Frequency spectra of the complex permittivity of 2-methoxyethanol (2-ME) with water, ethanol, dimethylsulphoxide (DMSO), N,N-dimethylformamide (DMF) and N,N-dimethylacatamide (DMA) have been determined over the frequency range of 10 MHz to 20 GHz at 25 $^{\circ}C$, using the Time domain reflectometry method, for 11 concentrations for each system. The static dielectric constant, dielectric constant at microwave frequency, relaxation time, excess dielectric parameters, and Kirkwood correlation factor have been determined. The relaxation in these systems within the frequency range can be described by a single relaxation time constant, using the Debye model. The parameters show a systematic change with the concentration.

Dielectric Relaxation Characteristics of Biology Thin Film (생체박막의 유전완화특성)

  • Song, Jin-Won;Cho, Su-Young;Lee, Kyung-Sup;Sin, Hun-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.107-110
    • /
    • 2003
  • In this paper, We introduced that the method for determing the dielectric relaxation time $\tau$ of floating monolayers on water interface. Displacement current flowing across monolayers is analyzed using a rod-like molecular model. It is revealed that the dielectric relaxation time $\tau$of monolayers in the isotropic polar orientational phase is determined using a linear relationship between the monolayer compression speed $\alpha$ and the molecular area Am. here Displacement current gives a peak at A = Am. The dielectric relaxation time $\tau$ of organic monolayers was examined on the basis of the analysis developed here.

  • PDF

A study on the Dielectric Relaxation Phenomena of phospolipid monolayers Film (인지질 단분자막의 유전완화현상에 관한 연구)

  • Cho, Su-Young;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.431-434
    • /
    • 2003
  • In this paper, We introduced that the method for deforming the dielectric relaxation time $\tau$ of floating monolayers on water interface. Displacement current flowing across monolayer is analyzed using a rod-like molecular model. It is revealed that the dielectric relaxation time $\tau$ of monolayers in the isotropic polar orientational phase is determined using a linear relashionship between the monolayer compression speed a and the molecular area $A_m$. A displacement current gives a peak at A=$A_m$. The dielectric relaxation time $\tau$ of phospolipid monolayers was examined on the basis of the analysis developed here.

  • PDF

Tempereture Dependent Dielectric Relaxation Study of Aniline in Dimethylsulphoxide and Dimethlformamide Using Time Domain Technique (시간분해기법을 이용한 디메틸 술폭사이드와 디메틸 포름아미드-아닐린용액에서 온도의존 유전이완에 관한 연구)

  • Chaudhari, Ajay;Patil, C.S.;Shankarwar, A.G.; Arbad, B.R.;Mehrotra, S.C.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.201-207
    • /
    • 2001
  • The dielectric relaxation study for aniline-dimethylsulphoxide (DMSO) and aniline-dim.ethylformamide(DMF) has been carried out using the Time domain reflectometry (TDR) technique, at different temperature and concentrations, in the frequency range of 10 MHz to 10 GHz. The dielectric parameters viz. static permittivity, relaxation time, the Kirkwood correlation factor, excess permittivity, excess inverse relaxation time and thermodynamic parameters have been obtained. The calibration method based on least squares fit method has been used. The dielectric parameters show systematic change with temperature and concentrations.

  • PDF

The structural and dielectric polarization characteristics of composite oxide material in $(Ba Ca)TiO_3$-Zn (복합산화물 $(Ba Ca)TiO_3$-ZnO의 구조적 및 유전분극 특성)

  • 홍경진;임장섭;정우성;민용기;김용주;김태성
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.239-246
    • /
    • 1997
  • The ZnO is stabilize dielectric constant over a broad temperature range because its addition makes the relaxation time short. In this study, the composite oxide material (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ was mixed by ZnO additive material and the dielectric polarization characteristics was studied. The relative density was over 90[%] at all specimen in the structural characteristics. Among of the specimen, the relative density of (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ with ZnO (0.4mol) has a 95[%]. The grain size of composite oxide material with an increasing ZnO increased and it was 1.0[.mu.m]-1.22[.mu.m]. In the electrical characteristics, the charge and discharge current was increased by ZnO addition. The dielectric relaxation time was increased by space charge polarization at above 110[.deg. C] and the dielectric relaxation time was fixed by space charge polarization of para-dielectric layer at below 110[.deg. C]. The dielectric relaxation time was maximum when the grain size was small. The dielectric relaxation time is decreased with an additive material ZnO and interface polarization, existing void at the grain and grain boundary. The remnant polarization is increased and the coercive electric field is decreased by ZnO.

  • PDF

Dielectric Relaxation in Ethylene Glycol - Dimethyl Sulfoxide Mixtures as a Function of Composition and Temperature

  • Undre, P.B.;Khirade, P.W.;Rajenimbalkar, V.S.;Helambe, S.N.;Mehrotra, S.C.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.416-423
    • /
    • 2012
  • Using time domain reflectometry, the complex dielectric spectra between 10 MHz to 20 GHz has been measured in the whole composition range at 10, 20, 30 and $40^{\circ}C$ for the binary mixtures of ethylene glycol and dimethyl sulfoxide. For all the mixtures, only one dielectric loss peak was observed in this frequency range. The relaxation in these mixtures can be described by a single relaxation time using the Debye model. A systematic variation is observed in dielectric constant (${\varepsilon}_0$) and relaxation time (${\tau}$). The excess permittivity (${\varepsilon}^E$), excess inverse relaxation time $(1/{\tau})^E$, Kirkwood correlation factor (g) and thermodynamic parameters viz. enthalpy of activation (${\Delta}H$) and Gibbs free energy of activation (${\Delta}G$) have been determined, to confirm the formation of hydrogen bonded homogeneous and heterogeneous cooperative domains, the dynamics of solute - solute interaction and the hindrance to molecular rotation in the hydrogen bonded glass forming ethylene glycol - dimethyl sulphoxide system.

Microwave Dielectric Characterization of Binary Mixtures of 3-Nitrotoluene with Dimethylacetamide, Dimethylformamide and Dimethylsulphoxide

  • Chaudhari, Ajay;Chaudhari, H.C.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1403-1407
    • /
    • 2004
  • Dielectric relaxation measurements on 3-nitrotoluene (3-NT) mixture of dimethylacetamide (DMA), dimethylformamide (DMF) and dimethysulphoxide (DMSO) have been carried out across the entire concentration range using Time domain reflectometry technique at 15, 25, 35 and $45^{\circ}C$ over the frequency range from 10 MHz to 20 GHz. For all the mixtures, only one dielectric loss peak was observed in this frequency range and the relaxation in these mixtures can be well described by a single relaxation time using Debye model. Bilinear calibration method is used to obtain complex permittivity ${\varepsilon}^{*}({\omega})$ from complex reflection coefficient ${\rho}^{*}({\omega})$ over frequency range 10 MHz to 20 GHz. The excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, molar energy of activation are also calculated for these mixtures to study the solute-solvent interaction.

Dielectric Relaxation Time of Long Chain Fatty Acid Langmuir films (장쇄지방산 L막의 완화 시간)

  • Cho, Dong-Kyu;Chang, Hun;Oh, Jae-Han;Gang, Yong-Chul;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.279-282
    • /
    • 2000
  • The displacement current measurement has been employed to study the dielectric properties of Langmuir films. A method for determining the dielectric relaxation time $\tau$ of floating monolayers on water surface is presented. The displacement current flowing across monolayers is analyzed using a rod-like molecular model. It's revealed that the dielectric relaxation time $\tau$ of monolayers in the isotropic polar orientational phase is determined using a liner relationship between the monolayers compression speed $\alpha$ and the molecular maximum area $A_{m}$. The compression speed $\alpha$ was about 30, 40, 50mm/minmm/min

  • PDF

Dielectric Relaxation Properties of Organic Ultra Thin Films for Nanotechnology (나노기술을 위한 유기초박막의 유전완화특성)

  • Cho, Su-Young;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.9-13
    • /
    • 2004
  • In this paper, evaluation of physical properties about dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DLPC, DMPC using pressure stimulus. As a result, the changed surface pressure, displacement current and the transition forms of dipole moment of phospolipid monomolecular in area per molecular by pressure stimulus were conformed well. It was known that the monolayers by linear relationship for decision of dielectric relaxation time between compressure speed and molecule area By according to the linear relationship relation get that frictional constant, DLPC was $1.89{\times}10^{-19}$[Js] and DMPC was $0.722{\times}10^{-19}$[Js]. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area.

  • PDF