• Title/Summary/Keyword: Dielectric characteristics

Search Result 2,349, Processing Time 0.031 seconds

Temperature Dependency and the Dielectric Characteristics of Crosslinked Polyethylene with Void (Void를 갖는 가교폴리에칠렌의 유전특성과 온도의존성)

  • Kim, Dong-Shick;Oh, Jae-Hyoung;Jeong, Woo-Kyo;Kim, Gyun-Song;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.218-220
    • /
    • 1996
  • This paper was evaluated dielectric characteristics and temperature dependency in the XLPE with and without void. Each dielectric loss was $3.5{\times}10^{-4}$(%) and a little decreased with temperature's increase. Capacitance presented a contant value. According as the study is obtained results, loss in the XLPE increased in proportion to square of applied voltage. As a result of the study, it was knowed that dielectric characteristics had a great deal to do with degradation in the high voltage dielectric materials.

  • PDF

A Study on the Optimium Preparation Conditions of MgO Protection Layer in PDP by Reactive Sputtering (반응성 스파트링에 의한 PDP용 MgO 보호층의 최적 형성조건에 관한 연구)

  • 류주연;김영기;김규섭;조정수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.432-435
    • /
    • 1997
  • In AC PDP, electrodes are covered with dielectric layer and the discharge is formed on the surface of the dielectric layer. MgO protection layer on the dielectric layer in PDP prevents a dielectric layer from sputtering and lowers the firing voltage due to a large secondary electron emission yield( ${\gamma}$ ). Until now, the MgO protection layer is mainly prepared by E-beam evaporation. However, there are some problems that is easy pollution and change of its characteristics with time and delamination. Therefore, in this study, MgO protection layer is prepared on dielectric layer by reactive R.F. magnetron sputtering with MgO target. Discharge characteristics and secondary electron emission coefficients of PDP are studied as a parameter of preparation conditions. Discharge voltage characteristics of the prepared MgO layer can be stable and improved by the annealing process in vacuum chamber.

  • PDF

Vt Close Curve Analysis for Improving Address Discharge Characteristics in Open Dielectric Structure of AC PDP (플라즈마 디스플레이의 개방형 유전체 구조에서 기입방전특성을 향상시키기 위한 Vt 폐곡선 분석)

  • Cho, Byung-Gwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.179-184
    • /
    • 2014
  • The discharge characteristics of an open dielectric structure were investigated, especially such as a firing voltage and related wall voltage, compared with conventional panel structure based on the Vt close curve measurement in AC plasma display panel. While the front panel of the conventional structure in AC plasma display panel was composed of the glass, electrodes, and dielectric, the open dielectric structure could easily produce the discharge between the scan and the sustain electrodes by erasing the dielectric layer between two electrodes. As the open dielectric structure differ from the conventional structure, various problems were produced when driving with the conventional driving waveform. Especially, due to the changes in the discharge firing characteristics of the open dielectric structure between the scan and the sustain electrodes on the front panel, the conventional reset waveform including the address waveform needed to be modified. In this study, the Vt close curves were measured to compare the discharge firing voltages on three electrodes in the conventional and open dielectric structure and based on the Vt close curve analysis, the modified driving waveform suitable for the open dielectric structure was proposed.

Discharge Characteristics of AC-PDPs with a grooved front dielectric layer

  • Jeong, Jin-Hee;Lim, Jong-Lae;Kim, Oe-Dong;Choi, Kwang-Yeol;Yoo, Eun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1266-1268
    • /
    • 2005
  • The influence of the grooved dielectric layer on discharge and luminous characteristics has been investigated for various depths of the groove to achieve a high luminance efficiency AC-PDP operated at a lower voltage. We use the voltagethreshold curve technique and address delay jitters to explain the discharge characteristics. It shows that the surface discharge voltage rely on the depth of the grooved dielectric layer. Vertical discharge voltage remains almost the same as the groove depth increases. The influence of the grooved dielectric layer on discharge and luminous characteristics has been investigated for various depths of the groove to achieve a high luminance efficiency AC-PDP operated at a lower voltage. We use the voltagethreshold curve technique and address delay jitters to explain the discharge characteristics. It shows that the surface discharge voltage rely on the depth of the grooved dielectric layer. Vertical discharge voltage remains almost the same as the groove depth increases.

  • PDF

Printing of Polymer Dielectric via Optimal Blade Coating for Large-scale Low-Leakage Capacitors (대면적 저누설 커패시터를 위한 최적화 블레이드 코팅 기반 고분자 유전체 프린팅)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.51-55
    • /
    • 2021
  • We demonstrated a polymer dielectric with low leakage characteristics through an optimal blade coating method for low-cost and large-scale fabrication of metal-insulator-metal (MIM) capacitors. Cross-linked poly(4-vinylphenol) (C-PVP), which is a typically used polymer dielectric, was coated on a 10 × 10 cm indium-tin-oxide (ITO) deposited glass substrate by changing the deposition temperature (TD) and coating velocity (VC) in the blade coating. During the blade coating, the thickness of the thin c-PVP varied depending on TD and VC owing to the 'Landau-Levich (LL) regime'. The c-PVP-dielectric-based MIM capacitor fabricated in this study showed the lowest leakage current characteristics (10-6 A/㎠ at 1.2 MV/㎠, annealing at 200 ℃) and uniform electrical characteristics when TD was 30 ℃ and VC was 5 mm/s. In addition, at TD = 30 ℃, stable leakage characteristics were confirmed when a different electric field was applied. These results are expected to positively contribute to applications with next-generation electronic devices.

Study on Electric Charactreistics of Multi-dielectric Thin Films Using Amorphous Silicon (비정질 실리콘을 이용한 다층 유전 박막의 전기적 특성에 관한 연구)

  • 정희환;정관수
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.1
    • /
    • pp.71-76
    • /
    • 1994
  • The electrical characteristics of the capacitor dielectric films of amorphous silicon-nit-ride-oxide(ANO) structures are compared with the capacitor dielectric films of oxide-nitride-oxide (ONO) structrues The electrical characteristics of ONO and ANO films were evaluated by high frequency(1 MHz) C-V high frequency C-V after constant voltage stree I-V TDDB and refresh time measurements. ANO films shows good electrical characteristics such as higher total charge to breakdown storage capacitance and longer refresh time than ONO films. Also it makes little difference that leakage current and flat band voltage shyift(ΔVfb)of ANO ana ONO films.

  • PDF

Electro-Optical characteristics with dielectric thickness of AC-PDP

  • Jung, K.B.;Choi, J.H.;Kim, S.B.;Jung, Y.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.768-770
    • /
    • 2003
  • In AC PDP, since charges generated by gas discharge are accumulated on the dielectric. The dielectric is a major factor to determine cell capacitance and its memory effect is a play an important role in PDP driving. In this experiment, we have investigated the electro-optical characteristics with dielectric thickness and we have analyzed wall charge and wall voltage by Q-V energy diagram. The dielectric thickness was varied from 20 um to 50 um. As results, according to the dielectric thickness increase,cell capacitance and power consumption is reduced.

  • PDF

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • Lee, Jong-Cheol;Jeon, Hong-Pil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

Dielectric Properties depending on Bias Voltage in Organic Light-emitting Diodes (유기 발광 소자의 바이어스 전압에 따른 유전 특성)

  • Oh, Yong-Cheul;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1038-1042
    • /
    • 2005
  • We have investigated dielectric properties depending on bias voltage in organic light-emitting diodes using 8-hydroxyquinoline aluminum $(Alq_3)$ as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using impedance of characteristics. Impedance characteristics was measured complex impedance Z and phase $\theta$ in the frequency range of 40 Hz to $10^8$ Hz. We obtained complex electrical conductivity, dielectric constant, and loss tangent $(tan\delta)$ of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

Properties of SiOCH Thin Film Dielectric Constant by BTMSM/O2 Flow Rates (BTMSM/O2 유량변화에 따른 SiOCH 박막의 유전상수 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.362-367
    • /
    • 2008
  • We have Manufactured the low-k dielectric interlayer fabricated by plasma enhanced chemical vapor deposition (PECVD), The thin film of SiOCH is studied correlation between components and Dielectric constant. The precursor was evaporated and introduced with the flow rates from 16 sccm to 25 sccm by 1sccm step in the constant flow rate of 60 sccm $O_2$ in process chamber. The chemical characteristics of SiOCH were analyzed by measuring FT/IR absorption lines and obtained each dielectric constant measuring C-V. Then compare respectively. ILD of BTMSM/$O_2$ could have low dielectric constant about $k\sim2$, and react sensitively. Also dielectric constant could be decreased by the effects of decreasing $CH_3$ and growing Si-O-Si(C) after annealing process.