• Title/Summary/Keyword: Dielectric Strength

Search Result 577, Processing Time 0.025 seconds

Surface Treatment of Dielectric Ceramic Resonator for High Frequency Devices (고주파용 유전체 세라믹 공진기의 표면처리)

  • Park, Hae-Duck;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.923-928
    • /
    • 2001
  • An electrolytic silver plating process has been successfully developed for terminated electrode parts of dielectric ceramic resonator. High adhesion strength and high Qu is obtained and blister occurance is minimized under plating condition with $HNO_3$750 $m\ell/\ell$ and HF $ 250m\ell/\ell$ solution at $25^{\circ}C$ for 20 minutes. Adhesion strength has the highest value, 3.2 kg/mm$^2$ at etching temperature of $25^{\circ}C$. Adhesion strength, Qu and blister occurance are monotonically increased with the thickness of electrodeposition layer. In case of electrodeposition of Ag, Qu value of 380 has obtained higher than in case of electrolytic Cu plating with Qu value of 325. Therefore, terminated electrode parts of dielectric ceramic resonator reducing dielectric loss can be obtained using prensent process.

  • PDF

A Study on Thickness and Temperature Dependence of Dielectric Breakdown in Polyethylene (폴리에틸렌의 절연파괴와 그의 온도 및 두께의존성)

  • Kim, Jeom-Sik;Lee, Jong-Bum;Jung, Woo-Kyo;Kim, Mi-Hang;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1388-1390
    • /
    • 1995
  • The characteristic of dielectric breakdown in solid insulating material dominates the reliability and safety of power equipment and affects directly to its life. In this point of view, the thickness and temperature dependence of dielectric breakdown strength and mechanism of dielectric breakdown in low density polyethylene which has been employed widely as insulating material have been technically reviewed by examinations of thermal property. The dielectric breakdown strength depending on its thickness was measured 2.6[MV/cm] at the thickness of 20[${\mu}m$] and 1.9[MV/cm] at the thickness of 75[${\mu}m$] based on ambient temperature of 30[$^{\circ}C$]. It is shown the temperature dependence that dielectric breakdown strength decreases in linear as the thickness increases. The dielectric breakdown strength depending on temperature was measured 2.6[MV/cm] at the temperature of 30[$^{\circ}C$], 1.6[MV/cm] at 60[$^{\circ}C$] and 1.3[MV/cm] at 90[$^{\circ}C$] based on the thickness of 20[${\mu}m$]. As the ambient temperature increases, the temperature dependence is shown that a very large drop is occurred up to temperature of 60[$^{\circ}C$] and a very small drop is discovered over 60[$^{\circ}C$].

  • PDF

Preparation and Dielectric Properties of Ceramic(BNT)-Polymer(LCP) Composite (세라믹(BNT)-폴리머(LCP) 복합체 제조 및 유전특성)

  • Park, Myoung-Sung;Chun, Myoung-Pyo;Cho, Jung-Ho;Nam, Joong-Hee;Choi, Byung-Hyun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.935-940
    • /
    • 2009
  • In this research, the composites (100-x)LCP-xBNT (x = 0, 10, 20, 30, 40 vol.%) were fabricated with thermoplastic LCP(Liquid Crystal Polymer) and BNT($BaNd_2Ti_4O_{12}$) which is a high frequency dielectric material. Their dielectric properties, mechanical strength and microstructure were investigated by Impedance analyser, Instron and SEM. In order to fabricate LCP-BNT composites, LCP resin was put into the twin screw type mixer($310^{\circ}C$), melted by keeping for 10 min. After that, BNT filler was dispersed with melted LCP resin for 15 min. in the mixer. For measuring the dielectric properties and mechanical strength, Composite specimens were made by pressing composite granule (LCP-BNT) with 7 ton in the mold at $310^{\circ}C$. With increasing the BNT content (0~40 vol.%) of the composite, Its dielectric constant increased, dielectric loss and flexural strength decreased. The dielectric constant and flexural strength of composites with 20~30 vol.% of BNT filler are 4.1~6.0 and 35~55 MPa respectively. BNT/LCP composite is the potential substrate material for the high frequency application.

Temperature Dependence on dielectric breakdown strength of Epoxy Nano-Composites depending on MgO (MgO를 첨가한 에폭시 나노 컴퍼지트의 절연파괴강도 온도의존성)

  • Jeong, In-Bum;Han, Hyun-Seok;Lee, Young-Sang;Cho, Kyung-Soon;Shin, Jong-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.48-48
    • /
    • 2010
  • In this paper, we have investigated temperature dependence of dielectric breakdown voltage at epoxy with added nano-filler(MgO), which is used as a filler of epoxy additives for HVDC(high voltage direct current) submarine cable insulating material with high thermal conductivity and restraining tree to improve electrical properties of epoxy resin in high temperature region. In order to find dispersion of the specimen, the cross sectional area of nano-composite material is observed by using the SEM(Scanning Electron Microscope) and it is conformed that each specimen is evenly distributed without the cohesion. As a result, it is confirmed that the strength of breakdown of all specimen at 50 [$^{\circ}C$] decreased more than that of the dielectric breakdown strength at room temperature. When temperature increases from 50 [$^{\circ}C$] to 100 [$^{\circ}C$], we have confirmed that breakdown strength of virgin specimen decreases, but specimens with added MgO show constant dielectric breakdown strength.

  • PDF

The variation of water absorption rate and DC dielectric breakdown strength of Epoxy composites due to filler content (충진재 함량 변화에 따른 에폭시 복합재료의 흡수율과 직류 절연파괴강도의 변화)

  • Lee, D.J.;Kim, T.Y.;Shin, S.K.;Kim, M.H.;Kim, K.H.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2349-2351
    • /
    • 1999
  • In this paper, the variable absorption rates and DC dielectric breakdown strength of epoxy composites were measured at boiling absorption condition in order to observe the influences of moisture in out door use. Also, in order to improve withstand voltage properties at moisture absorbtion condition. IPN (interpenetrating polymer network) method which had been already reported, was introduced and the influence was investigated. As a result, it was confirmed that the moisture absorption rate was increased and DC dielectric breakdown strength was degraded with boiling time and filler content increasing. On the other hand, it was confirmed that moisture absorption rate and DC dielectric breakdown strength degrading rate were lowered by the improvement of adhesion strength In IPN specimens.

  • PDF

A Review on Dielectric Breakdown of Anodic Oxide Films on Aluminum Alloys

  • Hien Van Pham;Cheolnam Yang;Sungmo Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.254-264
    • /
    • 2024
  • This paper reviews the dielectric breakdown resistance and behavior of anodic oxide films in air environment. It begins with a description of the dielectric breakdown mechanisms of dielectric materials. The paper then introduces different types of dielectric materials and compares them in terms of dielectric strength, thermal conductivity, mechanical strength and cost. Next, the paper summarizes various fabrication methods for dielectric aluminum oxide layers, discussing the advantages and disadvantages of each method. Finally, it provides an overview of current studies on the dielectric breakdown properties of anodic aluminum oxide films formed on different aluminum alloys in various electrolytes.

Experimental Investigation on Dielectric and Thermal Characteristics of Nanosized Alumina Filler Added Polyimide Enamel

  • Sugumaran, C. Pugazhendhi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.978-983
    • /
    • 2014
  • The polymer nano composite possess good priority recently for engineering applications. Especially the electrical insulating materials attract the high performance of nano composites. In this work the ballmill synthesiation process of nano sized Alumina ($Al_2O_3$), the preparation of new nano composite material with an content of enamel and synthesized Alumina as 1wt%, 3wt% and 5wt%. Experimental investigation has been carried out for the prepared nano composites materials with respect to dielectric parameter measurements such as dielectric loss (tan ${\delta}$), dielectric constant (${\varepsilon}$), dielectric strength under various temperature. The partial discharge level also measured for all the samples and the PD inception voltage is also observed and compared. Weight loss of the material has been analyzed through TGA. It has been experimentally proved that 3wt% of Alumina nano filler added enamel has significant improvement in the dielectric and thermal properties.

A Study on Dielectric Strength and Insulation Properly of PDMS (실리콘 폴리머의 내전압 및 절연특성에 관한 연구)

  • 지원영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.941-946
    • /
    • 2001
  • The fundamental study on HTV silicone for insulation material has been performed. In order to estimate the chemical behavior of siloxane under high voltage, H-NMR, GPC and vinyl contents measurement were used. As an experimental results, after high voltage stress, the molecular weight of siloxane are increased, the vinyl contents of siloxane are decreased. The dielectric strength of vinyl group containing siloxane was lower than only methyl containing siloxane.

  • PDF

Electrical Insulation Properties of Nanocomposites with SiO2 and MgO Filler

  • Jeong, In-Bum;Kim, Joung-Sik;Lee, Jong-Yong;Hong, Jin-Woong;Shin, Jong-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.261-265
    • /
    • 2010
  • In this paper, we attempt to improve the electrical characteristics of epoxy resin at high temperature (above $80^{\circ}C$) by adding magnesium oxide (MgO), which has high thermal conductivity. Scanning electron microscopy (SEM) of the dispersion of specimens with added MgO reveals that they are evenly dispersed without concentration. The dielectric breakdown characteristics of $SiO_2$ and MgO nanocomposites are tested by measurements at different temperatures to investigate the filler's effect on the dielectric breakdown characteristics. The dielectric breakdown strength of specimens with added $SiO_2$ decreases slowly below $80^{\circ}C$ (low temperature) but decreases rapidly above $80^{\circ}C$ (high temperature). However, the gradient of the dielectric breakdown strength of specimens with added MgO is slow at both low and high temperatures. The dielectric breakdown strength of specimens with 0.4 wt% $SiO_2$ is the best among the specimens with added $SiO_2$, and that of specimens with 3.0 wt% and 5.0 wt% MgO is the best among those with added MgO. Moreover, the dielectric strength of specimens with 3.0 wt% MgO at high temperatures is approximately 53.3% higher than that of specimens with added $SiO_2$ at $100^{\circ}C$, and that of specimens with 5.0 wt% of MgO is approximately 59.34% higher under the same conditions. The dielectric strength of MgO is believed to be superior to that of $SiO_2$ owing to enhanced thermal radiation because the thermal conductivity rate of MgO (approximately 42 $W/m{\cdot}K$) is approximately 32 times higher than that of $SiO_2$ (approximately 1.3 $W/m{\cdot}K$). We also confirmed that the allowable breakdown strength of specimens with added MgO at $100^{\circ}C$ is within the error range when the breakdown probability of all specimens is 40%. A breakdown probability of up to 40% represents a stable dielectric strength in machinery and apparatus design.

Dielectric Properties of Modified Epoxy Resins under Inhomogeneous Electric Field (개질된 에폭시 수지계의 불평등 전계하에서 절연특성)

  • An, Hyun-Soo;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1585-1587
    • /
    • 1996
  • The dielectric properties of DGEBA/MDA/GN system under inhomoneous electric field were investigated. As GN contents increased, impact strength increased, but dielectric breakdown strength decreased. At $150^{\circ}C$, the dielectric breakdown strength decreased and uniformly maintained with the increment of distance between two electrodes. The life-time of epoxy resin increased with the decrement of applied voltage, but dielectric breakdown didn't occur below specific applied voltage.

  • PDF